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Abstract—This paper studies the problem of detecting asymp-
tomatic cases in a temporal contact network in which multiple
outbreaks have occurred. For many infections, asymptomatic
cases present a major obstacle to obtaining a precise under-
standing of infection-spread. We show that the key to detecting
asymptomatic cases well, is taking into account both individual
risk as well as the likelihood of disease-flow along edges. Most
related research has ignored the interplay between these dual
aspects influencing disease-spread. We take both aspects into ac-
count by formulating the asymptomatic case detection problem as
a Directed Prize-Collecting Steiner Tree (DIRECTED PCST) prob-
lem. We present an approximation-preserving reduction from
this problem to the Directed Steiner Tree problem and use this
reduction to obtain scalable algorithms for the DIRECTED PCST
problem. Using these algorithms, we solve instances with more
than 1.5M edges obtained from both synthetic and actual fine-
grained hospital data. On synthetic data, we demonstrate that
our detection methods significantly outperform various baselines
(with a gain of 3.6×). As an application of our methods, we use
a measure of exposure to detected asymptomatic Clostridioides
difficile (C. diff) infection (CDI) cases as an additional feature
for the important task of predicting symptomatic CDI cases. In
this application, our method outperforms all baselines, including
those that don’t use asymptomatic CDI cases as a feature and
those that use other methods for detecting asymptomatic CDI
cases. We also demonstrate that the solutions returned by our
approach are clinically meaningful by presenting a case study.

Index Terms—asymptomatic cases, C. diff infections, prize-
collecting Steiner tree, temporal contact networks

I. INTRODUCTION

For many infections, e.g., Zika virus disease, malaria,
Methicillin-resistant Staphylococcus aureus (MRSA) infec-
tion, and Clostridioides difficile (C. diff) infection (CDI),
asymptomatic cases present a major obstacle to precisely
understand how the infection is spread, and they make im-
plementing effective interventions that much more challeng-
ing [12], [19], [26]. Indeed, asymptomatic cases are widely
believed to play a substantial role in the spread of COVID-19
[4], and asymptomatic transmission of SARS-CoV-2 has been
called the “Achilles’ heel” of control strategies for COVID-19.

Ideally, we would like to detect asymptomatic individuals
and apply infection-control policies (e.g., quarantine, isolation)
to them as well. However, detecting asymptomatic cases is
challenging for several reasons. First, since asymptomatic

cases do not show symptoms (by definition), only costly,
blanket surveillance strategies can detect these cases. Second,
asymptomatic cases may not have the same risk factors as
symptomatic cases, and therefore risk factors discovered for
symptomatic cases may not be a valid proxy for asymptomatic
cases. Third, from a data mining point of view, it is hard
to learn risk factors for asymptomatic cases because “ground
truth” data on asymptomatic cases is essentially non-existent.

The focus of this paper is the detection of asymptomatic
cases of healthcare-associated infections (HAIs). An HAI is
an infection that a patient acquires in a healthcare facility
while being treated for another condition. At any given time,
1 in 25 patients in the US has an HAI [18]. CDI and MRSA
infection are among the most common HAIs [18]. Some of the
experimental results we present are for detecting asymptomatic
cases of CDI, but our methods are widely applicable. The main
novelty and strength of our approach are that it takes into
account both individual risk as well as disease-flow through a
contact network. Prior work on detecting “missing infections”
(e.g., [23], [27], [28]) has largely ignored individual risk. The
main takeaway from our results is that both aspects of disease-
spread are critical. When evaluated on large-scale synthetic
data and actual hospital data, our approach outperforms meth-
ods that ignore either the individual risk or disease-flow.

A. Informal Problem Description

Our input consists of a hospital mobility log that tells us
time-stamped locations (e.g., hospital rooms) of patients and
healthcare professionals (HCPs). We represent this mobility
log as a temporal network G = (G1, G2, . . . , GT ), where Gi =
(Vi, Ei,Wi,Fi) is the static graph that captures interactions at
time i. At each time i, the edge set Ei represents the interac-
tions between nodes in Vi and Wi is the associated set of edge
weights, representing the “strength” of these interactions. Fi[v]
is the attribute vector for node v ∈ Vi at time i, representing
individual risk factors such as demographics, length of stay,
prescriptions, etc. We assume that there is a hidden disease-
spread process that starts independently from multiple sources
at possibly different times. At each time-stamp i, the set of
infected nodes Ii ⊆ Vi get a single chance to infect their
healthy neighbors. A distinguishing feature of our model is



Fig. 1: This schematic shows our overall approach to solving the ASYMPTOMATIC CASE DETECTION problem and applying
the solution towards HAI case prediction.

that the attribute vector Fi[v] influences the likelihood of a
node becoming infected. Each infected node also has a single
chance to recover. Those nodes which are newly infected
and those that fail to recover at time i, are infected at the
beginning of time stamp i+1. This process continues till time
T . Additionally, we are given time-stamped positive test results
for an HAI. In other words, for each time i, a subset Si ⊆ Ii
of the infected nodes are revealed to us and the remaining
infected nodes Ai = Ii \ Si are hidden asymptomatic cases.
Our problem can now be stated informally as:

ASYMPTOMATIC CASE DETECTION
Given a temporal network G = (G1, G2, . . . , GT ) and
a sequence (S1, S2, . . . , ST ) of observed cases, find the
asymptomatic cases A = ∪Ti=1Ai.

B. Solution Approach and Contributions

Our overall solution approach to the ASYMPTOMATIC CASE
DETECTION problem is shown in Figure 1. We now describe
this approach while highlighting our main contributions.
• Directed Prize-Collecting Steiner Tree formulation: We

model the ASYMPTOMATIC CASE DETECTION problem
as the Directed Prize-Collecting Steiner Tree (DIRECTED
PCST) problem. DIRECTED PCST takes two inputs: (i)
a time-expanded network that models infection flow and
observed infections and (ii) individual patients’ risks (prob-
abilities) of being colonized. The output to the DIRECTED
PCST problem is a tree that uses a combination of edges
likely to permit infection-flow and nodes likely to be asymp-
tomatic cases, thus taking into account these dual aspects of
disease-spread. We identify nodes in the output tree that are
not observed cases as asymptotic cases. Our work seems to
be the first to apply the DIRECTED PCST formulation to
problems in disease-spread.

• Scalable algorithms for DIRECTED PCST: The DI-
RECTED PCST is computationally very challenging, even to
solve approximately [10]. We present a new approximation-
preserving reduction from DIRECTED PCST to the Directed
Steiner Tree (DST) problem. We then leverage this reduction
to present three alternative algorithms for DIRECTED PCST:
(i) an approximation algorithm via the greedy DST approx-
imation algorithm of Charikar et al. [5], (ii) a flow-based
Linear Programming (LP) relaxation, and (iii) a simple
and fast heuristic based on minimum cost arborescence

(MCA). Using these algorithms, we are able to evaluate
our approach for detecting asymptomatic cases on a time-
expanded network containing more than 1.6 million edges.

• Learning individual risk: One of the inputs we provide to
the DIRECTED PCST problem is individual patients’ risks
of being colonized. Learning these risks is a challenging
problem due to the absence of “ground truth” data. We
present a hypotheses-driven approach to using patients’ at-
tributes such as demographics, length of stay, prescriptions,
etc., for learning patients’ risks of being an asymptomatic
CDI case. Our approach can be generalized to other HAIs.

• Extensive large-scale evaluation: We present extensive
experimental evaluation of our approach on synthetically
generated HAI data overlaid on temporal contact networks
obtained from fine-grained mobility data from a large public
hospital. Our approaches significantly outperform all the
baselines, including CuLT [23], a Steiner-tree based ap-
proach that ignores individual risk. Our best performing
method achieves an F1-score of 0.281, while our nearest
competitor achieves only 0.078.

• Application to predicting CDI cases: We present a novel
application of our methods to predicting (symptomatic)
HAI cases. Using asymptomatic cases identified by our
method, we create new features that we call asymptomatic
pressures, that measure exposure to asymptomatic cases. We
then compare models for HAI prediction that include these
asymptomatic pressures against (i) models that don’t include
these pressures and (ii) models that include these pressures,
but computed via other methods (e.g., CuLT). We show that
using asymptomatic pressures computed by our method as
a feature significantly outperforms all other competitors.

II. PROBLEM FORMULATION

In this section, we formalize the ASYMPTOMATIC CASE
DETECTION problem. First, we assume that we have learned
a function A from the space of feature vectors Fi to
[0, 1], representing probabilities that nodes (which are not
positive HAI cases) are asymptomatically infected. Given
that no “ground truth” data is available on asymptomatic
infections, this by itself is a non-trivial problem. We ad-
dress this in Section V for CDI, but in principle our meth-
ods can be used for any HAI. Second, we transform the
temporal network G = (G1, G2, . . . , GT ) and observed



Fig. 2: The temporal graph G on the left is transformed into
the time-expanded network GS(VS , ES , r, S,We,Wv) on the
right. Even though, in order to avoid clutter, the figure only
shows 4 edges leaving node r, there is an edge from r to every
node in the graph with weight γ.

case sequence (S1, S2, . . . , ST ) into a time-expanded net-
work GS(VS , ES , r, S,We,Wv) with edge weights We, node
weights Wv , a set S ⊆ VS of terminals, and a root r ∈ VS .
We describe this transformation below (see Figure 2).

• Nodes: Consider Vi, the node set for the time-i contact
network Gi. For each node v ∈ Vi, we add two nodes (v, i)
and (v, i+1) to VS . (Note that if v ∈ Vi and v ∈ Vi+1 then
(v, i+1) is added only once to VS .) We use the term layer
i to denote the subset of all nodes in VS whose times-stamp
label is i.

• Edges: For each edge (u, v) in Gi, we create a “cross” edge
((u, i), (v, i+1)). Additionally, for every v ∈ Vi, we create
a “straight” edge ((v, i), (v, i+ 1)).

• Edge weights: The “cross” edge ((u, i), (v, i + 1)) in ES
inherit its weight from the edge(u, v), i.e., it is assigned
weight Wi(u, v). For some parameter, β > 0, all “straight”
edges of the form ((v, i), (v, i+ 1)) are assigned weight β.
This assignment of edge weights in GS is denoted by We.

• Node weights: Each node (v, i + 1) in Gs is assigned the
probability A(Fi[v]).

• Terminals: The set of observed cases S is designated the
set of terminals of the graph GS .

• Root: We add a “dummy” root node r to VS and connect it
to every other node in VS . For some parameter γ > 0, we
make γ the weight of every edge leaving r. The γ parameter
controls the number of connected components in our solu-
tion upon removal of r. These connected components are
trees and can be interpreted as distinct outbreaks. Larger
values of γ will favor few outbreaks in an optimal solution.

An important (and easily verified) observation about GS is
that it is a directed acyclic graph (DAG). This property of GS
will play a crucial role in the efficiency of the algorithms we
consider in Section III.

We now formulate a precise version of the ASYMPTOMATIC
CASE DETECTION problem as a Directed Prize-Collecting
Steiner Tree problem (DIRECTED PCST).

DIRECTED PRIZE-COLLECTING STEINER TREE
(DIRECTED PCST)
Given GS(V,E, r, S,We,Wv) and a parameter α > 0, find
a tree T ∗(V ∗, E∗) rooted at r and spanning terminal set
S, such that

T ∗ = argmin
T

∑
(a,b)∈E(T )

We(a, b) + α ·
∑

a∈V \V (T )

Wv(a)

(1)

The objective function of the DIRECTED PCST problem aims
to balance two weights: one due to edges included in the tree
and other due to nodes excluded from the tree. As a result,
an optimal DIRECTED PCST solution T ∗ uses a combination
of low weight edges and high weight nodes. The connection
between DIRECTED PCST and the ASYMPTOMATIC CASE
DETECTION problem is now natural. Given a tree T ∗ that is a
solution for DIRECTED PCST, we interpret the non-terminal
nodes in T ∗ as likely asymptomatic infections.

The parameter α provides a way of controlling the relative
importance of included edge weights versus excluded node
weights. A large value of α places more importance on node
weights. Setting α = 0 yields the DST [5] problem as a special
case. While the DIRECTED PCST problem is parameterized by
α, the time-expanded network GS that is input to the problem
is parameterized by quantities β and γ. In our experiments,
we explore the space of these three parameters.

III. SCALABLE ALGORITHMS FOR DIRECTED PCST

The DIRECTED PCST problem is computationally very
challenging. In fact, its special case, the DST problem is
also very challenging. Not only is DST NP-complete, it
is also difficult to solve approximately (see Halperin and
Krauthgamer [10]). While there are constant-factor approx-
imation algorithms for the undirected version of PCST [2],
except for the message-passing heuristic [25] (which provides
no approximation guarantee), nothing seems to be known for
DIRECTED PCST. In fact, this is the situation not just for
arbitrary directed graphs, but also for DAGs [30] (see also
Theorem 1 in [22]).

We present the following three approaches to solving
the DIRECTED PCST. All three approaches depend on an
approximation-preserving reduction from DIRECTED PCST to
DST, that we provide in Section III-A. (i) We use the greedy
DST approximation algorithm of Charikar et al. [5] to approx-
imately solve DIRECTED PCST (Section III-B). (ii) We solve
a flow-based LP relaxation of DST [22] (Section III-C). Even
though solution returned by the LP is fractional, as we show
below, it can still be meaningfully interpreted in the context
of the ASYMPTOMATIC CASE DETECTION problem. (iii) We
solve the MCA problem on the metric graph induced by the
terminal set S and the root r (Section III-D). Even though
this approach does not come with a provable approximation
guarantee, our experimental results indicate that this is a fast
algorithm that outputs near-optimal solution.
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Fig. 3: (a) A time-expanded network GS with terminal set
S = {(v, 2)} (shown in red) and node weights is shown.
To obtain edge weights assume that β = γ = 1 and
We((u, 1), (v, 2)) = We((v, 1), (u, 2)) = 1. Suppose we
want to solve DIRECTED PCST with α = 10. (b) After
reducing DIRECTED PCST to DST, we get a graph G′ with
modified edge weights and no node weights. An optimal
directed Steiner tree T on graph G′ is shown on the right;
WDST (T,G

′) = 3 × (−8) + 28.1 = 4.1. Also note that
WPCST (T,GS) = 4 × 1 + 10 × 0.01 = 4.1, showing
that WDST (T,G

′) = WPCST (T,GS). Note that since edge
weights can be negative, leaves of an optimal directed Steiner
tree need not be terminals.

A. Reducing DIRECTED PCST to Directed Steiner Tree

We reduce DIRECTED PCST to DST as follows. Let
ES ⊆ E denote the edge set {(a, b) ∈ E | b ∈ S}.
Let T :=

∑
a∈V Wv(a). From GS we create a new graph

G′(V,E, r, S,W ′e) with only edge weights, given by the func-
tion W ′e : E → R, such that for all (a, b) ∈ E

W ′e(a, b) =

{
We(a, b)− α ·Wv(b), for (a, b) ∈ E \ ES
We(a, b) + α · T|S| , for (a, b) ∈ ES .

Note that the new edge weights W ′e(a, b) can be negative,
especially for large α. For any directed tree T in G that is
rooted at r and spans S, let WPCST (T,G) denote the objective
function value (i.e., the expression in (1)) of tree T for the
DIRECTED PCST problem on graph GS . For any directed
tree T in G′ that is rooted at r and spans S, let WDST (T,G

′)
denote the objective function value of tree T for the DST
problem on graph G′. The reduction is illustrated in Figure 3.
We have the following lemma.

Lemma 1: For any directed tree T (VT , ET ), VT ⊆ V,
ET ⊆ E, rooted at r and spanning S, WDST (T,G

′) =
WPCST (T,G). Furthermore, if T is an optimal directed
Steiner tree for G′, then T is also an optimal prize-collecting
Steiner tree for G.
In fact, we prove a stronger, approximation-preserving relation
between the two problems as shown by the following lemma.

Lemma 2: For any ρ ≥ 1, if a tree T is a ρ-approximate
directed Steiner tree for G′, then T is a ρ-approximate directed
Prize-Collecting Steiner tree for G.
Proofs for Lemma 1 and Lemma 2 are omitted due to space
constraints.

B. Greedily Solving DST Approximately

Having reduced DIRECTED PCST to DST, we use the
clever, greedy algorithm of Charikar et al. [5] to obtain an
approximation algorithm for DIRECTED PCST. The Charikar
et al. algorithm achieves an O(i2k1/i) approximation ratio in
time O(nik2i) for any fixed i ≥ 1 where k is the number
of terminals. Setting i = 1 gives an O(k) approximation
algorithm in O(nk2) time and setting i = 2 gives an O(

√
k)

approximation algorithm in O(n2k4) time. We use GREEDYi
to denote the Charikar et al. algorithm with parameter i.

C. Using an LP Relaxation of DST

Given a directed graph G′(V,E, r, S,W ′e), with a root node
r ∈ V , terminal set S ⊆ V , and edge-weight function W ′e :
E → R, the DST problem can be modeled by the following
flow-based integer linear program (ILP) [22]. The variables
fs,e ∈ {0, 1} for each s ∈ S and e ∈ E represent the presence
of 1 unit of flow from the root r to terminal s via edge e.
The variable ye ∈ {0, 1} indicates the use of edge e for some
flow; this meaning is enforced by the fourth constraint set,
fs,e ≤ ye. For any node v ∈ V , δ+(v) (respectively, δ−(v))
is the set of edges leaving (respectively, entering) v. The first
constraint ensures that there is 1 unit of flow leaving the root,
for each terminal s. The second constraint ensures that there is
1 unit of flow intended for s entering each terminal s. The third
constraint ensures flow conservation, of flows intended for all
terminals, at all nodes. The fifth constraint set (

∑
e∈δ−(v) ye ≤

1) ensures that the paths induced by the flows form a tree.

min
∑
e∈E

W ′e(e) · ye

s.t.
∑

e∈δ+(r)

fs,e −
∑

e∈δ−(r)

fs,e = 1 ∀s ∈ S

∑
e∈δ+(s)

fs,e −
∑

e∈δ−(s)

fs,e = −1 ∀s ∈ S∑
e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e = 0 ∀v ∈ V \ {r}, s ∈ S \ {v}

fs,e ≤ ye ∀s ∈ S, e ∈ E∑
e∈δ−(v)

ye ≤ 1 ∀v ∈ V

fs,e ∈ {0, 1} ∀s ∈ S, e ∈ E
ye ∈ {0, 1} ∀e ∈ E

It is easy to verify that this ILP models DST. An LP relaxation
of this ILP is obtained by replacing the two sets of integrality
constraints at the end of the program by 0 ≤ fs,e ≤ 1
and 0 ≤ ye ≤ 1 for all s ∈ S, e ∈ E. While solving
the ILP optimally is not computationally feasible, solving
this LP relaxation is. The following theorem formalizes the
connection between DIRECTED PCST and this LP relaxation
and indicates how we use the LP relaxation. The proof is
omitted due to space constraints.

Theorem 1: Let T ∗ be an optimal directed Prize-Collecting
Steiner tree for input GS(V,E, r, S,We,Wv) and parameter
α > 0. Let the graph G′(V,E, r, S,W ′e) be obtained from



GS via the reduction in Section III-A. Let W ∗ be the cost
of the solution returned by above LP relaxation on G′. Then
W ∗ ≤WPCST (T

∗, G).
At first glance it may be unclear if a fractional solution to

the LP relaxation has a useful interpretation in the context
of identifying asymptomatic cases. We propose the following
interpretation. For an integral solution to the LP, for each non-
terminal node v, either

∑
e∈δ−(v) ye = 1 or

∑
e∈δ−(v) ye = 0.

If the former is true, then v is in the tree and consider an
asymptomatic case. For a fractional solution to the LP, for each
non-terminal node v, 0 ≤

∑
e∈δ−(v) ye ≤ 1, and we interpret∑

e∈δ−(v) ye as the probability that v is an asymptomatic
case. This idea is inspired by the technique of randomized
rounding [20] for obtaining good integral solutions from
optimal fractional solutions.

D. Minimum Cost Arborescence Heuristic

Given an edge-weighted directed graph G(V,E,We) and a
vertex r ∈ V , an arborescence (rooted at r) is a tree T such
that (1) T is a spanning tree of G if we ignore the direction
of edges and (2) there is a directed unique path in T from r
to each other node v ∈ V . An MCA is an arborescence of
smallest total weight.

For general directed graphs we can compute an MCA in
O(m+ n log n) time due to Gabow et al. [9]. This improves
the naive implementation that runs in O(nm) time. For DAGs,
this algorithm can be simplified to run in O(m+n) time. The
algorithm is simply this: for each v 6= r add to the solution the
edge incoming into v with minimum edge weight (breaking
ties arbitrarily).

We use an MCA algorithm to produce a directed Prize-
Collecting Steiner tree on GS(V,E, r, S,We,Wv) as follows.
We first transform GS into G′(V,E, r, S,W ′e) as per the
reduction from DIRECTED PCST to DST from Section III-A.
From G′ we construct a new directed graph H whose vertex
set is S∪{r}. We add an edge (u, v) to H iff there is directed
path in G′ from u to v. The weight assigned to (u, v) in H is
the shortest path distance from u to v in G′. It is easy to verify
that since G′ is a DAG, H is also a DAG. To obtain a directed
Steiner tree on G′, we compute an MCA on H , replace each
edge (u, v) in the MCA by a shortest path in G′ from u to v,
and finally return tree obtained by taking the union of these
shortest paths.

IV. DATA

Our experimental results use an extensive, fine-grained hos-
pital operations data set collected from a large, public, tertiary-
care teaching hospital. The subset of these data used in this
paper consist of architecture data (complete set of CAD files
for a 3.2M square feet facility), admission-discharge-transfer
data (273K inpatient hospitalizations between 2003 and 2013),
prescription data (7.8M prescriptions), and surveillance data
(2K positive CDI lab tests between 2005 and 2011). Using
these data and given a size-T time window, we construct a
temporal network G = (G1, G2, . . . , GT ) and a sequence of
observed cases (S1, S2, . . . , ST ), as described next.

Note: All individuals present in our data (patients and HCPs)
are completely anonymous. For this reason, this project was
human subjects research exempt.

A. Constructing Temporal Graph from Raw Data

The subset of data relevant to our experiments consists of
the following elements:
1) A collection X of patient visits. Each visit x ∈ X spans

a sequence of consecutive days denoted by the range
[s(x), e(x)] and for each day d ∈ [s(x), e(x)] of a visit
x there is an associated location (patient room) denoted
`(x, d).

2) The set of locations is denoted by L and there is a
distance metric D : L × L → R+ defined on this set.
We use discretized CAD drawings of the facility to obtain
a “walking distance” metric between all pairs of rooms in
the hospital. This is represented by D.

3) A partition of X = C ∪ N , into CDI visits and non-
CDI visits. For each CDI visit x ∈ C, there is a day
d ∈ [s(x), e(x)] that corresponds to a positive CDI test;
we denote this day of positive test by d+(x).

4) For each visit x ∈ X , we have associated demographic fea-
tures and whether there was a previous visit to the hospital
within 60 days. In addition, we have features that change
over time. Specifically, for each day i ∈ [s(x), e(x)], we
have the length of stay (from admission time to day i) and
a list of high-risk antibiotics and gastric acid suppressors
prescribed to the patient for day i of the visit. Finally, we
also have “exposure” features, i.e., counts of the number
of other CDI patients in the same room or unit.

We now fix a time window size T (in days) and without
loss of generality assume that the days in this time window
are labeled 1, 2, . . . , T . For each i = 1, 2, . . . , T , we construct
the directed network Gi = (Vi, Ei,Wi,Fi) and observed case
sequence (S1, S2, . . . , ST ) as follows.
• Node set Vi: If i ∈ [s(x), e(x)] for a patient visit x ∈ X ,

we add x to Vi. In other words, Vi is the set of all patient
visits that are taking place on day i.

• Edge set Ei: For every x, y ∈ Vi, if locations `(x, i)
and `(y, i) belong to the same hospital unit, then we add
two directed edges (x, y) and (y, x) to Ei. In other words,
all ordered pairs of nodes in Vi that are located (on day
i) in the same unit are connected by edges. If locations
`(x, i) and `(y, i) do not belong to the same unit, then
for small probability p ∈ [0, 1] (e.g., p = 0.01), we
randomly (and independently) add edge (x, y) to Ei. These
“long-distance” edges model “weak ties” induced by HCPs
(especially physicians) who travel between units. Note that
the preponderance of HCP mobility is within units.

• Weights Wi: For every edge (x, y) ∈ Ei, we set We(x, y) =
D(`(x, i), `(y, i)). In other words, edge weights simply
represent physical distance between pairs of hospital rooms.

• Feature vector Fi: For every node x ∈ Vi, we set Fi[x]
using the features described earlier in item (4).

• Observed cases Si: For any node x ∈ Vi, if x ∈ C, i.e., x
is a CDI visit, and d+(x) = i, then x is added to Si.



From this temporal network G, we obtain a time-expanded
network GS(VS , ES , r, S,We,Wv) as described in Section II.
Note that learning the node weights Wv , which represent the
probability of a patient being an asymptomatic, is described
in Section V.

B. Generating synthetic “ground truth” data

Since we do not have “ground truth” data on asymptomatic
infections, we also use the data described in the previous
section to generate synthetic data via a partially hidden,
“biased” susceptible-infectious-susceptible (SIS) process. The
SIS model is designed for infections with no long-lasting
immunity; any susceptible agent can get infected with a prob-
ability upon contact with an infectious agent, and an infected
agent returns to a susceptible state with some probability. Here
we implement a biased version of the SIS process. Every node
v has an assigned probability (i.e., a bias) that represents the
individual node v’s risk of being an asymptomatic case; node
v participates in the process with this bias. We now describe
this process in more detail, carefully differentiating between
aspects that are hidden and aspects that are revealed.

Our implementation of the biased SIS process has three
main steps.
1) Generating biases and susceptible nodes. Recall that

in GS , each node v is assigned a probability Wv(v)
that represents the individual node v’s risk of being an
asymptomatic case. From the distribution of the Wv values,
we first learn a probability density function using kernel
density estimation (KDE). Next, for every visit x ∈ X , we
sample a bias Wx ∈ [0, 1] from the estimated probability
density function and then set a bit sx to 1, independently,
with probability proportional to Wx. We then project these
quantities, associated with visits, onto individual nodes in
Gs. Specifically, every node (x, i) in GS that corresponds
to visit x is assigned the probability Wx; i.e., Wv(x, i) =
Wx, and we set the state of (x, i) to “susceptible” if sx = 1.
For every node (x, i) in GS , the probability Wv(x, i) is
revealed to us, but the state of the node remains hidden.

2) Running the biased SIS process. Now, for some pos-
itive integer parameter k, we pick k infection sources
at random from the set of susceptible nodes. Then we
run an SIS process starting at each of these k sources.
Two aspects of the SIS process are worth noting: (i) only
the susceptible nodes participate in the SIS process and
(ii) the probability of infection flowing along an edge
((x, t), (y, t + 1)) in GS is inversely proportional to the
edge weight We((x, t), (y, t+1)). Note that the k sources
and the SIS process is entirely hidden from us.

3) Revealing observed infections. After running the SIS
process, we visit every infected node (x, i) in each of
the k infection trees and with a fixed probability q, we
independently reveal (x, i) to be infected. These revealed
infected nodes form the observed set of infections and we
use these as the set S of terminals. We then prune each
infection tree so that all leaves are revealed infected nodes.

The nodes in each pruned tree that are not revealed to be
infected are considered asymptomatically infected.

In summary, the biases and observed infections are revealed to
our algorithms, but everything else is hidden. However, we are
able to evaluate the performance of our algorithms because the
above-described process also provides us with “ground truth”
asymptomatic cases. We emphasize that a critical aspect of
our setup is the fact that the SIS process is influenced by the
revealed biases. We also note that our experimental setup is
quite flexible. For example, the simple functions that govern
the relationship between node biases and node susceptibility or
edge weights and the likelihood of infection flow along edges
can be easily replaced by other, more complicated functions.

For the time-expanded network GS obtained from 1 month
of data (20.9K nodes and 0.5M edges), for values of β =
1, 2, 4, we generate 18, 20, and 17 terminal nodes respectively,
and 40, 49, and 47 asymptomatic cases, respectively.

V. LEARNING INDIVIDUAL RISKS

In this section, we describe the training of a model that
takes as input the feature vector Fi[x] of each node x 6∈ Si
in graph Gi (i.e., nodes not observed to be infected) and
estimates the likelihood of x being an asymptomatic CDI case.
As mentioned earlier, the fundamental obstacle to training this
model is the fact that our data lacks “ground truth” labels. So
we use two simple and well-motivated hypotheses about how
asymptomatic CDI cases may relate to observed CDI cases in
order to train our model.
• Hypothesis 1: Asymptomatic CDI cases and observed CDI

cases have similar risk profiles.
• Hypothesis 2: The mechanism for acquiring (symptomatic)

CDI consists of the patient first being an asymptomatic CDI
cases and then being prescribed high-risk antibiotics.

Hypothesis 1 is justified by studies (e.g., [17]) that show
asymptomatic colonization has risk factors such as previous
CDI, antibiotic exposure, and hospital stay and these are
also risk factors associated with symptomatic CDI [6], [7].
Hypothesis 2 is justified by mechanistic models for CDI (e.g.,
[29]) that often attribute the transition from asymptomatic
CDI to symptomatic CDI to the use of additional high-risk
antibiotics. The two simple hypotheses are quite powerful in
that they allow us to train different asympomatic CDI case
prediction models that we can then evaluate. Using the trained
models we can obtain, for each non-terminal node (x, i) in the
time-expanded network GS , a probability Wv(x, i) of node
(x, i) being an asymptomatic CDI case. These probabilities
serve as node weights of the time-expanded network GS
provided as input to DIRECTED PCST.

Hypothesis 1 implies that we can train our model using
observed CDI cases as instance labels. Then, patients who
are assigned a high probability by a model trained in this
manner, but are not CDI cases, are inferred to be asymptomatic
CDI cases. Variants of this model can be obtained by using
different subsets of features. More specifically, we partition
the set of features into three groups: (i) baseline feature set
B, consisting of length of stay, age, gender, prior UIHC visit



Fig. 4: Performance of all the methods in the synthetic data
as measured by MCC (left) and F1-score (right). All of our
proposed methods MCA, GREEDY1, GREEDY2, and LP (in
blue) comprehensively outperform the baselines.

within 60 days, and the use of gastric acid suppressors, (ii)
colonization pressure feature set CP , consisting of different
measures of exposure to other observed CDI cases and (iii)
antibiotics (ABXs) feature set ABX , consisting of the use of
high-risk ABXs. For each of the 4 subsets S ⊆ {CP,ABX},
we train a model on the feature set {B} ∪ S.

Hypothesis 2 has the following useful implication. Suppose
A is the subset of patients who were prescribed high-risk
antibiotics during their visit. Then, the subset ACDI ⊆ A,
consisting of patients who tested positive for CDI is exactly
identical to the subset of A of patients who were asymptomatic
CDI cases (prior to receiving antibiotics) and A \ ACDI is
exactly the subset of A of patients who are not asymptomatic
CDI cases. Thus for the patients who were prescribed high-
risk antibiotics during their visit, the “observed case” label
corresponds exactly to the “asymptomatic case” label and we
can train our models on this subset of the data. Just like
for Hypothesis 1, we train 4 models by considering different
subsets of features in addition to the baseline set of features.

VI. EXPERIMENTS

We now present an extensive evaluation of the accuracy
and efficiency of our proposed methods on a large-scale
synthetic data. We also leverage our approach for an important
application, (symptomatic) CDI case prediction, on a real
hospital operations data described in Section IV. Our code and
synthetic data are available for academic purposes 1. All of our
experiments were conducted on a Intel(R) Xeon(R) machine
with 528GB memory.
Baselines: Since this is the first work on detecting asymp-
tomatic cases in a temporal network that takes individual
risks into account, there are no directly comparable methods.
However, we compare the performance of our approach against
the following natural baselines and state-of-the-art approach
for a closely related task.
• Frontier: Nodes neighboring the known symptomatic cases

could potentially be carriers. This method selects the neigh-
bors of the terminal nodes as asymptomatic cases. Precisely,
we mark a node as asymptomatic in the time-expanded
network GS if it has a directed edge to a terminal node.

1https://github.com/HankyuJang/directed-PCST-asymptomatic-detection

Fig. 5: The effect of varying α on the performance measured
by MCC (left) and F1-score (right). We see a sharp increase
of the performance from α = 0 to α = 1, followed by a minor
increase, then a gradual decrease as α increases.

• Contact top k: People with frequent contacts with others are
likely to be exposed to infectious pathogens. This method
selects top k%, for k ∈ {3, 5, 10}, high-contact nodes based
on the out-degree in GS . We explore k up to 10, based on
a study that found up to 10% of admitted patients fwere
asymptomatic C. diff carriers [13].

• LOS top k: As length of stay (LOS) of patients in the
hospital increases, there is a higher chance for the patient
to contract infectious agents. For example, LOS is known to
be a risk factor for HAIs [6], [7]. Here, we select top k%,
for k ∈ {3, 5, 10}, nodes based on the LOS.

• CuLT: This is the state-of-the-art Steiner-tree-based missing
infection detection approach [23]. Note that algorithms that
CuLT uses are just a special case of our Greedy approaches,
where there are no node weights.

A. Performance on the Synthetic Data

We perform a series of experiments on the synthetic data
described in Section IV-B to evaluate the performance of our
algorithms. We start with a subset of the hospital data restricted
to 1 month (Jan 2010) and first derive a temporal network (as
described in Section IV-A) from this data and then a time-
expanded network from this temporal network (as described
in Section II). This yields a time-expanded network with more
than 20.9K nodes and 0.5M edges We then run the biased SIS
simulation described in Section IV-B on this time-expanded
network, starting from multiple sources, to obtain a set of
observed symptomatic cases SGT and a set of asymptomatic
cases AGT as described in Section IV-B. Note that the point of
using synthetic data is that it provides us with “ground truth”
on asymptomatic cases.

1) Comparison with Baselines: The first experiment we
conduct is designed to measure effectiveness of our approaches
as compared to the baselines. We measure success for method
m based on the overlap of the asymptomatic cases Am it
infers and the ground truth AGT . We use Matthews correlation
coefficient (MCC) [16] and F1-score as metrics to quantify
success of the methods we evalute. Note that we tune hyper-
parameters including α, β, and γ for each method and report
the best performance. The final result is presented in Figure 4.
As shown in the figure, our proposed approaches significantly
outperform all the baselines in terms of both MCC and
F1-score. The result implies that our approaches recover as



many ground truth asymptomatic cases as any method, while
maintaining a very high accuracy. The high margin of the
discrepancy between the performance of our approaches and
the baselines could be attributed to the fact that our approach
finds the right balance between the likelihood of node being
exposed to the disease (via edge weights) and the likelihood
node developing symptoms (via node weights). The superiority
of our approach over CuLT highlights the importance of taking
individual risks into account in detecting asymptomatic cases.
This is a key takeaway from our results.

2) The Effect of α on the Performance: Next we study the
effect of the parameter α on the performance. Note that the
smaller values of α give higher weight to the edge costs while
the larger values give higher importance to the node weights,
forcing our algorithms to pick nodes with higher probabilities.
In this experiment, we quantify the effect of varying α on
the performance. To this end, we run our approaches on the
synthetic graph and obtain a set of recovered asymptomatic
cases for α = 0. We then repeat this process for different
values of α. We compute MCC and the F1-score for the
inferred asymptomatic cases for each value of α. The result
is presented in Figure 5. We observe that for α = 0, when
the node probabilities have no effect on the solution, the
performance is poor (as expected). On the other hand, for
positive values of α, the performance is much better for all
our methods. An immediate takeaway from this result is that
individual risks are an important aspect of disease-spread.
As we further increase α to values greater than 1, for the
three methods that return an integral solution, there is a slight
but gradual degradation in performance as more and more
emphasis is placed on the node weights. The LP-based solution
is much more sensitive to α and degrades relatively quickly
as α increases. We suspect that the flexibility of being able
to return a fractional solution allows the LP to disregard the
constraint (solution to be a tree) and this degrades performance
as α increases and there are more negative weight edges in the
underlying graph. This experiment demonstrates that for small
positive values of α where the importance of node-weights and
edge-weights are balanced, we achieve the best performance,
highlighting the importance of incorporating individual risks
in detecting asymptomatic cases.

B. Scalability and Accuracy Trade-off

As a step towards running our experiments on a larger
time-expanded network, we next study the trade-off between
scalability and the solution cost (summation of edge weights)
of our proposed approaches on the synthetic data. In Table
I, we summarize the performance, in terms of the objective
function cost our algorithms are minimizing and the time
(in seconds) for each of our four methods. As expected,
the optimal LP solution achieves the lowest cost, since its
solution cost is guaranteed to be a lower bound on the cost
of any integral directed Steiner tree (see Theorem 1). A
pleasant surprise is that MCA returns a solution that is just
a little bit larger than the LP solution, implying that the
MCA returns a near-optimal solution. The cost of the tree

Fig. 6: Performance of the CDI prediction task measured by
AUC. Our proposed approach DIRECTED PCST (in blue) out-
performs the other methods as well as not using asymptomatic
pressure features (dashed line).

returned by GREEDY2 is reasonable (within 2 times OPT),
while GREEDY1 returns a tree with relatively larger cost. With
regards to running time, the LP-based solution has a large
running time making it unscalable to large graphs. This is
because even though an LP can be solved in polynomial time,
the size of the flow-based LP (see Section III-C) is much
larger than the size of the underlying graph because there is
a flow variable fs,e for every edge e and every terminal s.
GREEDY2 achieves reasonable running time while maintaining
performance. It too, however, is too expensive for large graphs.
On the other hand, our other two heuristics GREEDY1 and
MCA take a fraction of a second to compute the solution.
Note that the MCA algorithm was made possible because we
ensured that the time-expanded graph is a DAG.

TABLE I: The mean cost of the solution and the mean elapsed
time in seconds for each method. s.t.dev in the parenthesis. The
values are obtained from experiments by keeping α = 0, but
varying other parameters β and γ.

Cost Time
MCA 66.422 (65.56) 0.006 (0.0)

GREEDY1 880.0 (1048.11) 0.001 (0.0)
GREEDY2 100.678 (96.68) 1830.093 (2385.95)

LP 61.111 (62.94) 3807.492 (2302.26)

VII. APPLICATION: CDI CASE PREDICTION

Next we apply our method for asymptomatic case detection
to the important task of predicting symptomatic CDI cases on
actual hospital data. Specifically, we use a measure of exposure
to detected asymptomatic CDI cases as an additional feature in
a CDI prediction model. Since we do have “ground truth” CDI
cases in our hospital data, we are able to compare our approach
to other proposed methods for CDI prediction. Predicting CDI
cases early is important task for many clinical reasons. For
example, it can be used for doing early and more targeted
testing of patients and initiating additional cleaning procedures
at targeted locations so as to reduce CDI spread.

We expand the 1-month time window to 3-months and
obtain a time-expanded network with more than 60.9K nodes



Fig. 7: A solution tree of the DIRECTED PCST of the exper-
iment on the hospital data. Nodes in orange denote terminals.

and 1.6M edges Given the size of the this graph, and given
our results on the cost-time tradeoff, we only use GREEDY1

and MCA as algorithms for DIRECTED PCST.
Here, we first run all the methods to infer asymptomatic

cases in the 3-month time-expanded network. Then we lever-
age the inferred asymptomatic cases to predict the symp-
tomatic CDI cases. To do so, we train a neural network with
two types of data: (i) standard risk factors of CDI (e.g.,
[7]) and (ii) additional features, that we call asymptomatic
pressures, that measure the exposure to the newly identified
asymptomatic CDI cases. Note that the additional features in
(ii) are generated from the solutions of our approaches and the
baselines. For each method, we investigate if adding exposure
features to asymptomatic CDI cases improves performance
of the neural model in predicting symptomatic cases. Since
we have the ground-truth symptomatic cases, we use the area
under ROC curve (AUC) to quantify the effectiveness of each
method of predicting symptomatic cases. We split the data
temporally into equally sized training and test sets. We further
split training set into training (80%) and validation (20%) sets.
Since the methods differ from each other only in asymptomatic
pressures, their performance on symptomatic case prediction
can be viewed as a proxy measure of how accurate the choice
of asymptomatic cases was.

Figure 6 shows the CDI case detection results. The hor-
izontal dashed line is the baseline performance that do not
use asymptomatic pressures as features. One would expect
adding extra information regarding exposure to the asymp-
tomatic cases would only improve the performance. Hence,
we interpret a method to have detected potential asymptomatic
carriers correctly, if the performance of the symptomatic cases
classification surpass the dashed line after adding additional
features measuring the exposure to inferred asymptomatic
cases. We note that all the natural baselines described ear-
lier actually deteriorate the performance, as these baselines
are not able to identify the asymptomatic carriers correctly.
Furthermore, we compare our method against two alternative
“extremes” for identifying asymptomatic cases: (i) CuLT:

which uses a low-cost directed Steiner tree, while ignoring
node weights completely and (ii) Features only: which uses
node weights representing individual risks, while ignoring
edges completely. For the CuLT method, adding asymptomatic
pressures degrades performance relative to the baseline. The
Features only method is helped by the use of asymptomatic
pressures, but not as much as our method. The results in
Fig 6 show that our proposed approach via the DIRECTED
PCST problem (in blue) performs better than all the baselines
and improves over the horizontal dashed line in terms of
the AUC on the symptomatic cases prediction task. These
results indicate that our approach is indeed able to infer likely
asymptomatic cases in real outbreaks even when the “ground
truth” data on asymptomatic cases is not available. The success
in this task serves as a further, though indirect, evidence of the
fact that our approach detects asymptomatic cases accurately.

VIII. CASE STUDY

We perform a case study on the real hospital data to
demonstrate that the asymptomatic cases inferred by our
approachs are meaningful. Here we chose our MCA algorithm
with parameters α = 2, β = 2, γ = 0. Fig 7 shows the solution
tree returned by MCA for our directed PCST problem. There
were 97 CDI cases in the period of 3 months and our solution
partitioned these into 38 outbreaks. One of these outbreaks
is the “giant” outbreak, shown in Fig 7 as emanating from
the leftmost child of the “dummy” root. There are 4 minor
outbreaks, also shown in Fig 7. The remaining 33 outbreaks
are just isolated cases and not depicted in the figure. In the
figure, the intermediate nodes connecting the terminals to the
root are inferred to be the asymptomatic cases.

Upon exploring the data in further detail, we discovered an
inferred asymptomatic case (node in blue in the highlighted
sub-tree) had visited the hospital for a major surgery for
a disease unrelated to CDI. The asymptomatic patient was
transferred into the hospital from an acute-care hospital which
provides inpatient medical care. Since exposure to healthcare
settings is an important risk factor for CDI, it is likely that this
asymptomatic patient was exposed to C. diff there. It turns out
that this asymptomatic case and the four children of this node
had visited the same location; the children nodes may have
contracted C. diff at the location.

IX. RELATED WORK

Several approaches have been proposed for outbreak detec-
tion [1], [21], infection prediction [15], disease modeling con-
trol [11], and epidemic surveillance [3] in temporal networks.
See [15] for a survey of existing works in this space.

There has been much interest in reconstructing epidemic
outbreaks over time. Farajtabar et al. [8] use two-stage frame-
work that learns the diffusion model and identifies the source
that maximizes the likelihood of observing the cascade as per
the learned diffusion model, as a solution to the source identi-
fication which is a special case of missing infection problem.
Sundareisan et al. [24] propose Netfill that recovers missing
infections under SI model given snapshots of infections over



time, using minimum description length principle [24]. There
is also some work that leverage Steiner trees to infer missing
infections. Rozenshtein et al. [23] use a Steiner tree based
approach to reconstruct epidemic cascades on a streaming con-
tact network for SI-like model. Xiao et al. [28] solve a related
problem of inferring missing infections in static networks and
in a different paper Xiao et al. [27] propose a sampling based
approach for a robust cascade reconstruction. None of these
approaches incorporate individual risks. Note that our problem
of detecting asymptomatic cases is inherently different from
the problem of inferring missing infections because individual
attributes play a significant role in determining whether or not
an individual is asymptomatically colonized. Makar et al. [14]
present a latent state modelling approach to detect asymp-
tomatic carriers. However, they assume that the underlying
network is static and the disease does not spread through a
chain of infections. In this paper, we solve the problem in a
more general setting, where the underlying network is dynamic
and disease spreads through a chain of asymptomatic cases.

X. CONCLUSION

This paper studies the problem of detecting asymptomatic
cases in a temporal network in which outbreaks have occurred.
We show that taking into account both individual risk and
the likelihood of disease-flow along edges, leads to improved
detection. We formulate the asymptomatic case detection
problem as a Directed Prize-Collecting Steiner Tree problem.
and show an approximation-preserving reduction from this
problem to the Directed Steiner Tree problem and then use this
reduction to obtain scalable algorithms for the Directed Prize-
Collecting Steiner Tree problem. We then solve large instances
of this problem on both synthetic data and actual hospital
data and demonstrate that our detection methods outperform
various baselines, including baselines that ignore either the
individual risk or edge characteristics. We also demonstrate
that the solutions returned by our approach are clinically
meaningful by conducting a case study.
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