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ABSTRACT

Asymptomatic carriers of an infection make it more challenging
to understand the characteristics of that infection (e.g., parameters

such as Rp) and to design, implement, and evaluate interventions.

Asymptomatic carriers are usually not tested, which also means
we do not have “ground truth” labels for these cases in our data. In
this paper, we propose a 2-stage classification model for inferring
asymptomatic carriers of Clostridioides difficile (C. diff) infections
(CDI), a common healthcare-associated infection that causes almost
half a million illnesses in the US each year. Guided by hypotheses
derived from literature on risk factors for C. diff carriers, we design
a Stage 1 model for detecting asymptomatic C. diff carriers that is
trained on symptomatic CDI cases. We evaluate the performance
of this Stage 1 model by designing a Stage 2 model to predict CDI
incidence that uses among its inputs exposure to asymptomatic
C. diff carriers inferred by our Stage 1 model. Results from this
evaluation lead to two findings. First, our results show that the
best performing Stage 1 model depends on all of the standard risk
factors for CDI except for high-risk antibiotics. This is an intriguing
finding that highlights an important difference between the risk
profile of CDI patients and C. diff carriers. Second, we show that
adding exposure to asymptomatic cases as an input to the Stage 2
CDI classification model leads to better performance. This result
implies that asymptomatic C. diff carriers do in fact contribute
to CDI spread, confirming an important conjecture from the CDI
literature.
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1 INTRODUCTION

For many infections, asymptomatic cases present a major obstacle
to understanding precisely how the infection is spread, and they
make implementing effective interventions that much more chal-
lenging. Indeed, asymptomatic cases are widely believed to play
a substantial role in the spread of COVID-19 [3, 21] and asymp-
tomatic transmission of SARS-CoV-2 has been called the “Achilles’
heel” of control strategies for COVID-19 [13].

The focus of this paper is on inferring asymptomatic cases of
a common healthcare-associated infection (HAI) known as C. diff
infection, or CDI. An HAI is an infection that a patient acquires in
a healthcare facility while being treated for another condition. At
any given time, 1 in 25 patients in the US has an HAI [23]. CDI is
caused by the bacterium Clostridioides difficile, and is characterized
by diarrhea and inflammation of the colon: there are almost half
a million cases of CDI in the US each year [12]. CDI, and HAIs
in general, pose a major challenge to healthcare systems world-
wide, especially because some of these infections are becoming
resistant to antibiotics, the primary treatment used to address these
infections.

There is evidence that a substantial fraction of patients admitted
to a healthcare facility are asymptomatic C. diff carriers [18, 19].
One particular study [19] found that up to 10% of patients admitted
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to a tertiary hospital in Minnesota during March-April 2009 were
in fact asymptomatic C. diff carriers. Yet the role of asymptomatic
cases in the spread of CDI within healthcare facilities is largely
unexplored [1], though there is accumulating indirect evidence that
this role is substantial. For example, another study [10] found that
45% of CDI cases originated from sources other than symptomatic
cases, suggesting a significant role for asymptomatic persons; a
still more recent study [29], found that only 17% of CDI cases in a
hospital ward had direct contact with other symptomatic patients,
also suggesting that the pathogen had been acquired from other,
presumably asymptomatic, sources.

Understanding the role of asymptomatic C. diff carriers is a
critical element in designing effective interventions. Our paper
presents a data-driven approach to identifying and understanding
the role of asymptomatic C. diff carriers on the diffusion of CDI in
a healthcare setting.

1.1 Results and Approach

Guided by literature on risk factors for being an asymptomatic
C. diff carrier [16], we evaluate multiple data-driven models for
inferring if a patient is an asymptomatic C. diff carrier. Our evalua-
tion is based on retrospective data, for the time period 2007-2011,
from the University of Iowa Hospitals and Clinics (UIHC), contain-
ing about 154K patient visits and associated demographic fields
and rich spatio-temporal information on procedures, antibiotics,
comorbidities, within-hospital transfers, etc. It is known that risk
factors for (symptomatic) CDI include age, length of hospital stay,
recent prior hospital admission, use of certain antibiotics consid-
ered high-risk for CDI, use of proton pump inhibitors, and severity
of other comorbidities [9]. However, much less is known about the
risk factors for asymptomatic C. diff carriage. Our first finding is
that a predictive model for inferring asymptomatic C. diff carriage
that uses all the (above mentioned) features that are risk factors for
symptomatic CDI, except for high-risk antibiotics has good perfor-
mance, relative to other models we consider. Specifically, excluding
antibiotics as a risk factor seems to lead to a model with better
performance than the model obtained by including antibiotics as
a risk factor. This is an intriguing data-driven finding that is con-
sistent with [16], where antibiotic use is not listed as a risk factor
for asymptomatic C. diff carriage. However, as mentioned earlier,
there is a lot unknown about risk factors for asymptomatic C. diff
carriage and in other literature (e.g., [8]) the Cephalosporin class of
antibiotics were found to be a risk factor for asymptomatic C. diff
carriage.

The key difficulty in training and testing a predictive model for
asymptomatic C. diff carriage is that we do not have any “ground
truth” data, i.e., we have no labels identifying certain patients as
being asymptomatic C. diff carriers. Our data — like most large-
scale inpatient data from hospitals — only contain information on
patients who tested positive for CDI, and these tests are invariably
administered to patients who show symptoms. We overcome this
missing label problem in two ways. First, we consider two alterna-
tive hypotheses on the relationship between CDI and asymptomatic
C. diff carriage and use these hypotheses to generate a number of
different prediction models for asymptomatic C. diff carriage. Sec-
ond, we test out models indirectly by viewing these models for
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predicting asymptomatic C. diff carriage as constituting the first
stage in a 2-stage model. We design the Stage 2 model for predicting
symptomatic CDI cases. Inspired by the approach in [7, 9, 30], we
use measures of exposure to asymptomatic C. diff carriers identified
by the Stage 1 model as features in the Stage 2 model. Our second
finding is that a model that includes exposure to asymptomatic
C. diff carriers outperforms models that don’t include this exposure.
This finding simultaneously shows two things. First, it reveals the
predictive power of our Stage 1 models and identifies Stage 1 mod-
els that outperform other models (e.g., the Stage 1 model that uses
all CDI risk factors except for antibiotics). Second, it shows that
exposure to asymptomatic C. diff carriers is a salient risk factor for
CDJ, something that has been conjectured widely in CDI literature
[10, 29].

Additionally, we also investigate spatio-temporal clustering of
the cases inferred to be C. diff carriers by our model. In prior work
[27], we have shown that CDI cases at the UIHC exhibit spatio-
temporal clustering. Using similar statistical tests, we show here
that the observed CDI cases along with the inferred asymptomatic
C. diff carriers also exhibit spatio-temporal clustering. This finding
provides additional indirect evidence that in-hospital exposure to
asymptomatic C. diff carriers may be playing a role in the spread
of CDI in the hospital.

1.2 Other Related Work

Besides the papers cited earlier, there are two computational ap-
proaches to the problem of inferring asymptomatic cases, that are
worth mentioning here. Makar et al. [20] define a generative prob-
abilistic model for problem of inferring asymptomatic cases and
their impact on other agents via exposure. Their main contribution
is a computational method for solving for the parameters of the
model. A different strand of research uses [28, 31, 32] the Steiner
tree problem as a model for the problem where some nodes in a
contact network are observably infected (i.e., symptomatic) and the
infection status of other nodes is latent.

2 THE STAGE 1 MODEL: INFERRING
ASYMPTOMATIC C. DIFF CARRIERS

2.1 The UIHC DataSet

The data used in this paper consist of anonymized electronic medi-
cal records (EMR) and admission-discharge-transfer records (ADT)
for patient visits at the UIHC for the period 2007-2011. The 154,230
patient visits in the data are divided into two groups: (i) visitcpy, vis-
its during which patients tested positive for CDI and (ii) visitcpx,
the rest of the visits. As in [11, 24, 30], we exclude short visits in
both visitcpr and visitcpry, where patients are discharged within
48 hours of admission. The reason for excluding short visits from
visitcpy is that such CDI cases are unlikely to be hospital-associated
and the reason for then excluding short visits from visitcpry is that
otherwise the length of a visit field might end up being a prominent
artificial signal of a non-CDI visit. For each visit in visitcpyy, we
generate one instance per day (CDIx instances) from the admission
date to discharge date for that visit. Similarly, we generate daily
instances (CDI instances) for each visit in visitcpy, starting from
the admission date, but only until three days before the CDI pos-
itive test date [22]. We exclude instances for the last three days
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before a positive CDI test because there could be modifications to
patient treatment during this period that could be in response to
potential CDL This process results in 8,946 CDI instances from 750
visits in visitcpr and 988,780 CDIx instances from 115,271 visits in
Visitcprx-

2.1.1 Individual risk factors for CDI. We include in each instance,
25 features extracted from the EMR and ADT data, which are consid-
ered risk factors for CDI in literature [7, 9]: length of stay of the visit
until the date of the instance (LOS), age, gender, previous UIHC visit
within 60 days (PV), the number of high-risk antibiotics prescribed
(ABXs) and the number of gastric acid suppressors prescribed
(GASs) during the visit. Guided by literature on antibiotics that are
considered high risk for CDI [25], we use the following five ABXs
as features: (i) Amoxillin or Ampicillin (ABX 1), (ii) Clindamycin
(ABX 2), (iii) Third generation Cephalosporin (ABX 3), (iv) Fourth
genenration Cephalosporin (ABX 4), and (v) Fluoroquinolone (ABX
5). Similarly, guided by literature on risk factors for CDI [6], we
use the following two GASs as features: (i) H2-receptor antago-
nists (GAS 1), and (ii) proton pump inhibitors (GAS 2). We generate
three features each for the seven medications (ABXs and GASs): (i)
prescription (Ppedication)s @ binary feature, indicating if the medi-
cation was prescribed on the date of the instance, (ii) sum prescrip-
tion count (SPyedication), Number of days where the medication
was prescribed to the patient, and (iii) mean prescription count
(MPyedication = SP”‘EL“’%) of the medication. We use ABX,
for x € {1,2,3,4,5} to denote the tuple (Pagx,,SPaBx,, MPABX, )
correspoding to ABX x. Similarly, we use GASy, for x € {1, 2} to
denote the tuple (Pgas,,SPcas,» MPgas, )-

2.1.2  Exposure risk factors for CDI. Colonization pressure is a mea-
sure of the proportion of patients infected or colonized with a
specific pathogen in a specific physical area (e.g., a hospital ward
or a geographic region) over a specified period of time [2]. Colo-
nization pressure serves as a proxy measure for exposure, and the
notion of colonization pressure has also been applied to CDI, albeit
only those patients who have tested positive for CDI are included in
the pressure calculation [7, 30]. Colonized patients who are asymp-
tomatic are typically undetected and are usually excluded from
pressure calculations. As has been done in other studies [7, 30], we
compute this modified measure of colonization pressure, which we
call CDI pressure and use it as an exposure risk factor for CDL

We assume that CDI patients are infectious 3 days before the
positive result and up to 14 days after the test date. For each visit in
visitcpy and visitcpry, we keep track of the number of infectious
CDI patients in the same room or unit, daily. From these counts,
we generate the following four features:

o Unit sum CDI pressure (SCPypj;): cumulative daily number
of infectious CDI patients in the same unit, from admission
date up to the date of the instance

® Room sum CDI pressure (SCProom): cumulative daily number
of infectious CDI patients in the same room from admission
date up to the date of the instance

o Unit mean CDI pressure (MCPypni;): %

e Room mean CDI pressure (MCProom): %

Table 1 summarizes basic statistics of these features for CDI
visits and CDIx visits.
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2.2 Training the Stage 1 Model

The goal of our Stage 1 model is to predict the likelihood of an
individual being an asymptomatic C. diff carrier, as a function of
certain hand-curated risk factors. As mentioned earlier, the funda-
mental obstacle to training this model is the fact that our data lacks
“ground truth” labels. So the training of our Stage 1 model depends
on hypotheses we make regarding how asymptomatic C. diff car-
riers relate to patients who have tested positive for CDI. The first
hypothesis we consider is the following.

Hypothesis 1: Asymptomatic C. diff carriers and CDI
cases have similar risk profiles.

This hypothesis is not necessarily backed by studies in the lit-
erature; as mentioned earlier, the risk factors for asymptomatic
C. diff carriage and the progression from C. diff carriage to CDI
is not well understood. We propose this as a simple, reasonable
hypothesis that allows us to train C. diff carriage prediction models
that we can then evaluate. If we assume this hypothesis, we can
train our Stage 1 model using CDI cases as instance labels. Then,
patients who are assigned a high probability by a model trained in
this manner, but are not CDI cases, are inferred to be asymptomatic
C. diff carriers. Variants of this Stage 1 model can be obtained by
using different subsets of features. More specifically, we partition
the set of features into three groups: (i) baseline feature set B, con-
sisting of LOS, age, gender, PV, GAS1, and GASa, (ii) colonization
pressure feature set CP, consisting of SCPynit, SCProom, MCPynir,
and MCPyom, and (iii) ABX feature set ABX, consisting of the 5
high-risk antibiotic feature tuples described earlier. For a subset

Table 1: Basic statistics of features. The values denote mean
over each visit in visitcp; or visitcpr, and values in the
bracket denote std. dev. For most of the features the values
for visitcpy are much larger than the corresponding values
for visitcpry (e.g., LOS: 10.93 vs 7.58).

Feature visitcpr visitcprx
LOS 10.93 (23.09) | 7.58 (11.14)
age 53.5 (23.23) | 44.23 (24.9)

gender 0.55 (0.5) 0.48 (0.5)
PV 0.35(0.48) | 0.19(0.39)

SPGas1 1.71(5.54) | 0.92(3.37)

SPGas2 5.81(13.98) | 2.98 (6.37)

MPG st 0.17 (0.34) | 0.11(0.28)
MPGas: 0.42 (0.41) 0.33 (0.4)

SPapx1 0.46 (2.37) | 0.48 (2.37)

SPaBx2 0.1 (1) 0.05 (0.57)

SPapx3 0.39 (2.07) | 0.21(1.23)

SPaBx4 1.2 (3.55) 0.24 (1.58)

SPapxs 1.58 (4.68) | 0.73 (2.47)

MPagx1 0.04 (0.15) | 0.05(0.19)
MPagx> 0.01 (0.06) 0 (0.04)
MPagx3 0.04 (0.16) | 0.03 (0.13)
MPaBxa 0.1 (0.26) 0.02 (0.13)
MPagxs 0.11(0.23) | 0.08(0.21)
SCPynit 1.47 (3.18) | 2.16 (4.84)
SCProom | 0.03(0.23) | 0.08(0.75)
MCPynir | 0.23(0.46) | 0.26 (0.47)
MCProom 0.01 (0.1) 0.01 (0.06)
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S C {B,CP, ABX}, let D° denote the dataset with every CDI and
CDIx instance consisting of features from S. We train 4 different
Stage 1 models using datasets DB, pBCP pBABX pBCPABX

We train additional Stage 1 models on the basis of the following
hypothesis.

Hypothesis 2: The mechanism for acquiring (symp-
tomatic) CDI consists of the patient first being an
asymptomatic C. diff carrier and then being prescribed
high-risk antibiotics.
Again, this hypothesis is not necessarily backed by medical stud-
ies, though mechanistic models for CDI (e.g., [33]) often attribute
the transition from C. diff carriage to CDI to the use of additional
high-risk antibiotics. This hypothesis has the following useful im-
plication. Suppose A is the subset of patients who were prescribed
high-risk antibiotics during their visit. Then, the subset Acpy C A,
consisting of patients who tested positive for CDI is exactly identi-
cal to the subset of A of patients who were asymptomatic C. diff
carriers (prior to receiving antibiotics) and A \ Acpy is exactly the
subset of A of patients who are not asymptomatic C. diff carriers.
This motivates the restriction of our data set to just those daily
instances where patients are prescribed to at least one ABX since
admission. When a model is trained on this subset of data, the
instances in visitcpyy that the model assigns the True label are
inferred to be asymptomatic C. diff carriers. 5,483 CDI instances
out of 359 visits from visitcp; and 374,821 CDIx instances out
of 35,002 visits from visitcpry result from this restriction. Using

this restricted data set, we train 4 additional Stage 1 models using

B B,CP B,ABX B,CP,ABX
datasets Dy py-.o- Dag 00 Dapx~o- Dax>o
by considering different subsets of features.

that are obtained

2.2.1 Model training. Each dataset of instances mentioned in the
previous section contains timestamped instances for the 5-year
period 2007-2011. For each dataset, we build five prediction models,
each model obtained by training on a 4-year subset, with one year
excluded. Recall that the labels in our datasets correspond to a
positive CDI test, whereas our goal for each model is to predict the
likelihood of a patient being an asymptomatic C. diff carrier. For
each dataset, a multi-layer perceptron model (MLP) is trained on
the instances in 4 years (we use 20% of instances as a validation set,
not used in training), and tested on the instances in the remaining
year. We train a two-layer MLP, with a hidden layer size of 16, ReLU
activation, and drop out of 0.5 using the Adam optimizer with a
learning rate of 0.01 and maximum training for 200 epochs, but
with an early stopping if the validation loss does not decrease for 3
consecutive epochs.

After the training and testing of the five models is completed,
for each instance (a day during a patient visit), we have a probabil-
ity that we interpret to be the likelihood of that patient being an
asymptomatic C. diff carrier on that day. We now assign to each
visit in visitcpry, the maximum probability of all the instances from
the visit. We interpret this probability as the likelihood that the
patient was a C. diff carrier during this visit. Our next step is to
use these probabilities to mark a subset of the visits as being C. diff
carrier visits. According to a survey [14] of studies on the preva-
lence of C. diff carriage, 0-17.5% of healthy adults were carriers
of C. diff strains without clinical signs of CDI. Keeping this range
in mind, we separately select the top 10%, top 5%, and top 3% of
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the visits in visitcpyx by probability and designate these sets of
visits as visitacprios, visitacpIs%. and visitacprsy, respectively.
Note that we have 8 different Stage 1 models, which means we have
8 different sets of visitacprio%, VisitacDIs%, and visitacprse, as a
result.

3 EVALUATING ASYMPTOMATIC C. DIFF
CARRIER PREDICTIONS

The output of the Stage 1 Model is a subset of patient visits that
are marked with the patient being an asymptomatic C. diff carrier
during the visit. Note that the patients do not have a positive CDI
test during these visits. As mentioned earlier, the key difficulty
in evaluating this inference is that we do not have “ground truth”
labels for asymptomatic C. diff carriers. We propose two indirect
ways of validating and evaluating our Stage 1 model predictions.

(i) We design a 2-stage model for predicting symptomatic CDI
cases that uses, in addition to standard risk factors of CDI,
features that measure exposure to asymptomatic C. diff carri-
ers (as predicted by our Stage 1 model). We investigate if this
2-stage model has improved performance due to inclusion of
these additional exposure features. Furthermore, this frame-
work also allows us to indirectly compare different Stage 1
models, by virtue of how well the 2-Stage model using that
particular Stage 1 model performed.

(if) We perform statistical tests to determine if the collection of
CDI cases and asymptomatic C. diff carriers (as inferred by
our Stage 1 model) exhibit spatio-temporal clustering. In our
prior work [27], we observed statistically significant spatio-
temporal interaction and clustering of CDI cases at the UTHC.
Note that these were just the cases with a positive CDI test.
We interpreted this finding as providing evidence of the
within-hospital spread of CDI. A similar result for the collec-
tion of cases that additionally includes asymptomatic C. diff
carriers will provide evidence that asymptomatic C. diff car-
riers also have a role to play in the within-hospital spread of
CDL

3.1 Training the Stage 2 Model

We now design a CDI prediction model that includes exposure to
asymptomatic C. diff carriers (as predicted by our Stage 1 model)
as features. We investigate the question of whether including these
exposure features improves the CDI model prediction.

In Section 2.1.2 we defined 4 different measures, called CDI
pressures, of exposure to CDI cases. In a similar manner, we define
4 measures of exposure to asymptomatic C. diff carriers. We start
by assuming that any patient designated to be an asymptomatic
C. diff carrier during a visit is infectious throughout the visit. This
assumption leads to the following definition of asymptomatic C. diff
carrier pressures AP, consisting of SAP, i, SAProom, MAPynit, and
MAPo0m.

e Unit sum asymptomatic C. diff pressure (SAPypi;): cumula-
tive daily exposure to asymptomatic C. diff carriers detected
in the Stage 1 model in the same unit from admission date
up to the date of the instance
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e Room sum asymptomatic C. diff pressure (SAProom): cumu-
lative daily exposure to asymptomatic C. diff carriers in the

same room from admission date up to the date of the instance
SAPunit

e Unit mean asymptomatic C. diff pressure (MAPynit): =738

e Room mean asymptomatic C. diff pressure (MAProom): =1 5%
Figure 1 shows the interaction between Stage 1 and Stage 2 models.

Stage 1

CP | ABX | CDI?

DS’ DSABX>0
SC{B, CP, ABX}

@Bt
Stage 2 as\l‘“ o0

B | cp |Anx| Ap ¥ cors
—_— —»AUC
S=1{B CPABXAP} .

Figure 1: Diagram of the 2-stage model

In Section 2, we defined 8 different models for predicting asymp-
tomatic C. diff carriers, 4 for each of the two hypotheses. From
each of these 8 models, we get a different set of 4 exposure features,
representing exposure to asymptomatic C. diff carriers. As a result,
we evaluate 8 different Stage 2 models (Table 3) and for comparison
we also evaluate one Stage 1 model (Table 2) without any feature
corresponding to exposure to asymptomatic C. diff carriers.

3.2 Spatio-temporal Clustering of
Symptomatic and Asymptomatic CDI Cases

In the previous work, we created a hospital graph of UIHC using
room and spaces in a corridor as nodes (19K) and direct passage
between node pairs in the 5-6m distance as edges (47K) [5]. We
associate with each CDI case a timestamp (date of positive CDI test)
and a location (room the patient was in at the time of positive CDI
test). Two CDI cases are said to be in spatio-temporal proximity if
the two cases occurred within 14 days of each other in rooms that
are (roughly) within 30 m apart from each other, which is within 5
hop distance in the hospital graph [26]. This notion is conveniently
described to be a CDI case proximity graph Gepr = (Vepr, Ecpr),
where Vepy is the set of CDI cases at the UIHC during the period
2007-2011 and Ecpy is the edges that connects pairs of CDI cases in
spatio-temporal proximity. Note that CDI cases that tested positive
for CDI within 48 hours of admission are not included in Vepr
because these cases are unlikely to be acquired during the hospital
visit. We can generalize the notion of CDI case proximity graph in
a natural way to include asymptomatic C. diff carriers. With each
patient visit marked as an asymptomatic C. diff carrier case by our
Stage 1 model, we associate a date, which is the date during the visit
that was assigned the highest probability of being an asymptomatic
C. diff carrier. Once a date is assigned to a visit, we can also associate
a location to the visit, which is the room occupied by the patient on
that date. For x € {3, 5,10}, let Let GrRepixz = (VReDIx%» ERCDIx%)
denote the revealed CDI case proximity graph. Here Vrcpixy, is the
union of the set of CDI cases and the set of asymptomatic C. diff
cases output by our Stage 1 model when it was required to mark x%
of visits in visitcpyx as asymptomatic C. diff carrier visits. Among
the 8 sets of asymptomatic C. diff cases from 8 different Stage

SAProom
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1 models, we select the set of cases where adding the exposure
features from these cases yields the best performance on the Stage
2 model. ERcprxy, is the set of edges connecting pairs of nodes in
VRreDIx that are in spatio-temporal proximity.

We compute a number of basic network statistics of Greprxs, X €
{3,5, 10} and compare these with corresponding statistics for Gepr
(Table 6). We then compute specific measures of network density
and make a similar comparison (Table 7). Finally, we perform statis-
tical tests on GReprxs, X € {3,5, 10} (e.g., Knox test [17]) for testing
if the union of the set of CDI cases and the set of asymptomatic
C. diff cases exhibit spatio-temporal clustering. The results from
these computations are described in Section 4.

4 RESULTS
4.1 Stage 1 Model

Table 2 summarizes the performance of the 8 Stage 1 Models, 4
models derived from each hypothesis (see Section 2). Recall that
even though the purpose of these models is to predict asymptomatic
C. diff carriers, they are trained on labeled data, where the labels
indicate CDI. Table 2 shows how well these models are able to
predict CDL As an evaluation measure, we report AUC, the area
under the receiver operating characteristic (ROC) curve, as the eval-
uation metric for our models since AUC is widely used as an evalu-
ation metric for an imbalanced dataset. Note that our datasets are
hlghly imbalanced: the imbalance ratio of datasets DS and DS A BX>0°
C {B,CP,ABX} is 111:1 and 68:1, respectively, which makes
model training challenging. The AUCs reported in Table 2 are the
test AUCs averaged over five years of training and testing on each
dataset; this procedure is similar to k-fold cross-validation, but each
fold corresponds to the instances in the same year. The 8 columns
on the right of the table correspond to the 8 different models, as
indicated by the column labels. The best performing Stage 1 Model
is the one trained on DBABX.CP ith a mean AUC of 0.719. This is
not surprising because this model uses features of all the standard
risk factors for symptomatic CDIL The next best model is the one
trained on DBCP | with a mean AUC of 0.704. This result shows
that ABX helps the prediction of symptomatic CDI. Again this is
not surprising because high-risk antibiotics play an important role
in predictive models for CDI. Exposure to CDI patients consistently
help the prediction, as revealed by pairwise comparisons of models
trained on features that use CDI pressures vs. those that do not
use CDI pressures, e.g. DBABX.CP and DBABX The overall AUCs
S C {B,CP, ABX} is smaller
C {B,CP, ABX}, though this
has a smaller set of

from the models trained on D3 ABX>0,

compared to those trained on DS, S

comparison may not be fair since DABX>0

instances compared to DS.

Table 2: AUC on Stage 1 models

B B,ABX B,CP B,ABX,CP B B,ABX B.CP B ABX,CP
D D D D DABX>0 DABX>0 DABX>0 DABX>0
AUC|0.676| 0.635 0.704 *0.719 0.594 0.584 0.672 0.648

2AUC with asterisk denote best performer for DS,S C {B,CP,ABX}



epiDAMIK 2020, Aug 24, 2020, San Diego, CA

4.2 Stage 2 Model

The results of Stage 2 models are shown in Table 3. Each AUC in the
table corresponds to the mean test AUC averaged over five years
of training and testing on each dataset. As denoted by the label
at the top (in the first row), every Stage 2 model evaluated here
is trained on DBABX.CP.AP , i.e,, the dataset consisting of all risk
factors for symptomatic CDI (B, ABX, and CP) along with asymp-
tomatic pressures AP. The 24 models shown in this table differ in
how asymptomatic C. diff carriers are identified in Stage 1. The 8
column labels in the second row on the right of the table correspond
to the 8 different models on which the visitscprio%, visitacDI5%>
and visitacprss (bottom 3 rows in the table) are detected, as indi-
cated by the column labels. The most important takeaway from this
table is that using DBCP as the dataset during Stage 1 consistently
leads to the best performance. In other words, a model that uses
baseline features (B) and colonization pressure features (CP), but
not high-risk antibiotic features (ABX) to identify asymptomatic
C. diff carriers, seems to most accurately identify C. diff carriers.
This intriguing finding that is consistent with [16], seems to indi-
cate that antibiotics that are risk factors for CDI are not associated
with asymptomatic C.diff carriage.

The three Stage 2 models corresponding to DBCP (AUC: 0.733,
0.729, 0.727) outperform the best performing Stage 1 model (
AUC: 0.719), clearly indicating that exposure to asymptomatic
C. diff carriers impacts the spread of CDI. Most of the remain-
ing Stage 2 models perform even worse than the Stage 1 model
using DBABX.CP 1y other words, using exposure to asymptomatic
C. diff carriers is worse than not using such exposure features, if
asymptomatic C. diff carriers are detected poorly. Table 5 shows the
AP of visitcpy and visitcpryx that is computed from asymptomatic
C. diff carriers which are detected in Stage 1 Model on DBCP.

As a sensitivity test of our Stage 2 models, we train models on
additional datasets that contain as features, exposure to randomly
selected visits in visitcpyy, instead of AP. We randomly select 10% of
the visits in visitcpry, and generate 4 exposure features from these
visits (RP) in the same manner as the AP features were generated.
We repeat this five times to generate five different sets of random
exposure features (RPs), namely Random;,i € {1---5}. The results
are in Table 4. The mean AUCs on these Stage 2 models are all
worse than the AUCs obtained just by using the Stage 1 model on
DBABX.CP Thjs result shows that adding pressure features from a
random subset of visits does not improve the CDI prediction.

4.3 Spatio-temporal Clustering

Table 6 shows the network statistics of Gopr and revealed CDI case

proximity graphs Grepixs = (VReDIx% ERcDIx%)- Here VRepixy
is the union of the set of CDI cases and the set of asymptomatic

Table 3: AUC on Stage 2 models

DB-ABX.CP

DB,AB ,CP,AP
AP | DB | DB-ABX | pB.CP | pB,ABX,CP DﬁBX>0 ﬁﬁfﬁ ﬁ.g)fw Dﬁﬁ)}(si(dcp
10% [0.712| 0.687 | *0.733 0.710 0.700 0.724 0.697 0.703
5% [0.701| 0.690 | *0.727 0.685 0.693 0.714 0.689 0.702
3% [0.689| 0.698 | *0.729 0.690 0.710 0.704 0.686 0.711
2AUC with asterisk denote best performer
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C. diff cases output by our best-performing Stage 1 model (DBCPy,

with the requirement that x% of the visits from visitcpy are marked
as asymptomatic C. diff carrier visits. The number of nodes and
edges (|V|, |E|), average, max and std dev of degrees ((k), kmnqax, and
std), the clustering coeflicient (cc), the average size of connected
components avg(|Ecpnt|), and the number of nodes and edges of
the giant component (|Vgiant|, |Egiant|), all increase as we add more
asymptomatic C. diff cases to the graph.

Figure 2 shows a connected component of Greprigs that con-
tains 7 CDI cases and 48 asymptomatic C. diff carriers over 3 months
period (March 21 - July 6 2011). The CDI case (July 6) in the bottom
of the graph is only connected to an asymptomatic C. diff carrier
(July 1) who has connections to CDI cases (June 18, June 19). This
asymptomatic carrier may be attributable to the CDI case that is
not directly connected with other CDI cases.

We compared the Gepr and Greprxs, X € {3,5, 10} on the four

different measures of density: (1) ‘lEE*ll , number of edges / number
|E|

of possible edges, (2) L number of edges / number of nodes, (3)

, the size of the giant component / number of nodes, and

|Egiant I

" (IEcpnz )
avg cpnt

e : :

nodes. All of the density measures were larger in the revealed CDI

case proximity graphs compared to those in the CDI case proximity

graph. Furthermore, all four density measures of Grcprioy were

the largest, followed by Greprse and Greprsy, as shown in Table 7.

, average size of connected components / number of

Table 4: AUC on Stage 2 models (pressures are computed
from random selection of 10% of the visits in visitcpyy)

DB,ABX,CP,RP

RP |Random1|Random2 |Random3|Random4 | Random5
AUC| 0.703 0.709 0.684 *0.711 0.696
2AUC with asterisk denote best performer

Table 5: Statistics of AP computed from visitscpri0% detected
in Stage 1 model trained on DBCP

Feature visitcpr visitcprx
SAPynit 35.74 (83.24) | 34.33 (64.16)
SAPro0m 2.15 (18.26) 2.91 (16.02)
MAP, it 2.99 (2.9) 3.93 (4.02)
MAP,o0m 0.15 (0.34) 0.27 (0.55)

Table 6: Network statistics

Gepr | Grepiss | Grepissw | GRepios

|V| 783 4241 6546 12310

|E| 120 4150 10630 37842

<k> 0.307 1.957 3.248 6.148

Kmax 4 18 31 47

std 0.581 2.095 3.145 5.195

cc 0.013 0.306 0.443 0.561
avg(|Ecpnel) | 0.179 2.262 5.502 21.141
Viant | 8 118 245 1239
|Egiant| 10 232 738 6393
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Figure 2: A connected component in Grcprigs composed of
7 CDI cases, in blue, and 48 asymptomatic C. diff carriers,
in orange, over 3 months period (March 21 - July 6 2011).
The CDI case (July 6) on the bottom-most of the graph is not
connected to other CDI cases directly, but an asymptomatic
C. diff carrier (July 1) connects them to CDI cases (June 18,
June 19).

Additionally, we performed statistical tests on Greprxs, X €
{3, 5,10} to test if the union of the set of CDI cases and the set
of asymptomatic C. diff cases exhibits spatio-temporal clustering.
For each revealed CDI case proximity graph, we performed the
Knox test by comparing the number of edges in Greprxs with the
distribution of the number of edges in the graphs that are obtained
by permuting the timestamp of the cases in Greprxy for random
100 permutations. Similarly, we test the statistical significance of
the average size of the largest component (avg(|Ecpn:|)) and the
size of the largest component (|Egjgn¢|). In Table 8, the p-value of
the Knox test and the average size of the largest component was
0 for all of the revealed CDI case proximity graphs that indicate
spatio-temporal clustering of the cases. However, we observed that
the size of the |Egjqn| in the permuted graphs is mostly larger than
the revealed case proximity graphs of Greprse and Greprios. Our
conjecture regarding this last result is that the time interval of 5
years is not long enough to scatter the timestamps of cases far away
from each other.

5 DISCUSSION AND FUTURE WORK

Our results point to several avenues for future work that involve
gathering prospective clinical data. Our Stage 1 model for identi-
fying patients who are likely to be asymptomatic C. diff carriers
needs to be clinically tested. Designing low-cost clinical protocols
for gathering these data and performing appropriate statistical tests

epiDAMIK 2020, Aug 24, 2020, San Diego, CA

is critical in order to have confidence in our results. One of our
findings suggests that risk factors for asymptomatic C. diff carriage
include most of the standard risk factors, with the exception of
high-risk antibiotics. This finding needs to be made more precise
and also tested by gathering prospective clinical data.

The datasets that are used in this paper are highly imbalanced
with the imbalance ratio of 111:1 and 68:1 for Df&BX>0 and DS R
S € {B,CP, ABX, AP}, respectively, that makes the classification
problem extremely difficult. To combat its extreme imbalance, we
explored undersampling the majority instances in the training set
during the training procedures of Stage 1 models; we gained some
improvement in the training AUCs, but there was not much of a
difference in the testing set AUCs, as we maintained the imbalance
in the test set. We aim to explore oversampling strategies such as
SMOTE [4] in our future work to improve the overall performance
of our classifiers.

In this paper, we only consider the possibility of CDI cases being
exposed to asymptomatic C. diff carriers. We do not consider more
complicated chains of exposure involving sequences of asymp-
tomatic C. diff carriers. Combining more complicated exposure
chains with individual risk models is another avenue for future
work. It seems possible to use formulations that involve the Steiner
tree problem [28, 31, 32] for this purpose.

Another direction of the future work is using deep embedding
approaches, such as Graph Convolutional Networks (GCN) [15]
where we let the deep neural network to learn from individual risk
factors in the EMR and their exposure to other patients that are
captured in the ADT data.

Our asymptomatic C. diff carrier detection method can be applied
in other infectious diseases where exposure plays an important role
in disease diffusion. It is usually unknown if people we come in
contact with are asymptomatic carriers of an infectious diseases.
However, if data on an individual’s risk factors to an infectious
disease, contact information between these individuals, and a subset

Table 7: Network density

Gepr | Grepisy | Grepiss | GrRebrioy

‘lEE*ll 0.000392 | 0.000462 0.000496 0.000499

% 0.153257 | 0.978543 1.623892 3.074086
% 0.012771 0.054704 0.112741 0.519334
w 0.000229 | 0.000533 0.000841 0.001717

Table 8: Statistical test results on Grcpixs and the mean val-
ues of the statistics on the permuted graphs. Values in brack-
ets denote std. dev.

Grepisn | Grepisw | Grepios
|E|, Knox test 0 0 0
p-value | avg(|Ecpntl) 0 0 0
|Egiant| 0.37 0.99 0.77
[E| 3650 (58) | 9213 (115) | 33790 (223)
statistics | avg(|Ecpne|) | 1.87 (0.04) | 4.53 (0.09) | 18.56 (0.28)
|Egiant | 228 (75) | 1091 (142) | 6620 (325)
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of individuals’ infectious state is available, then our model would
be able to detect the latent spreaders.
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