

Dynamic Healthcare Embeddings for Improving Patient Care

Presenter: Hankyu Jang

Collaborators: Sulyun Lee, Hasib Hasan, Sriram Pemmaraju, Bijaya Adhikari

University of Iowa COMP COPI computational epidemiology research

The University of Iowa

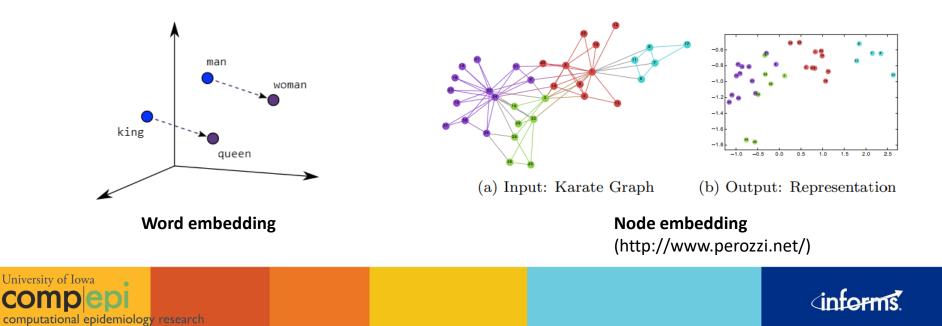
Contents

- Background on embeddings
- Patient embedding
 - Unsupervised
 - Supervised
 - Dynamic (*our method*)
- Results

Background on learning embeddings

What are embeddings?

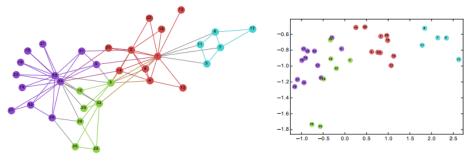
Embedding is a vector representation of an entity (words, nodes, etc)



Background on learning embeddings

Why learn embeddings?

We can use the learned embeddings in various downstream ML tasks



(a) Input: Karate Graph

(b) Output: Representation

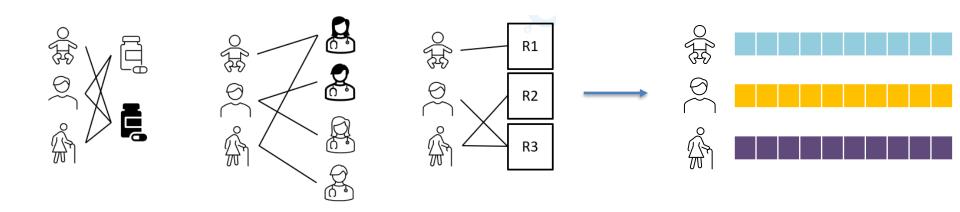
Node embedding (http://www.perozzi.net/) - Node classification on partially labelled graph

- **Link prediction** on unobserved or future links

Patient embedding

What are patient embeddings?

Vector representation of patients that captures medical history of patients

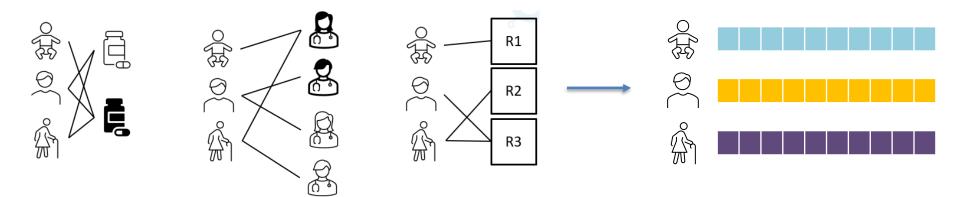


Patient embedding

Why learn patient embeddings?

We can use patient embeddings in various prediction tasks in healthcare

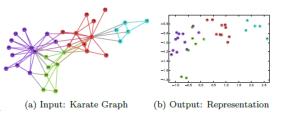
- sudden ICU transfer, infectious disease infection, length of stay at hospital, etc



Before we dive in to patient embedding methods, let's go over different **types** of **network embedding**

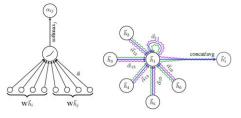
Network embedding methods

Unsupervised embedding



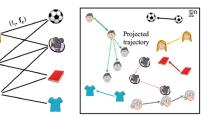
DeepWalk [+]: *node embedding* is learned by maximizing the likelihood of observing nearby nodes Variation: *walk*

Supervised embedding



GCN [-]: Learn *node embedding* by *end-to-end* node classification task Variation: *feature aggregation*

Dynamic embedding

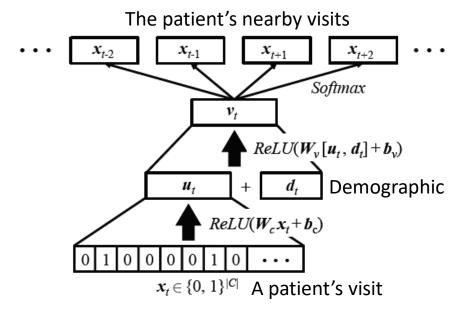


JODIE [*]: Learns *user embedding* and *item embedding over time* based on interactions by predicting future interaction

[+] B. Perozzi et al., "DeepWalk: online learning of social representations," KDD 14
[-] T. N. Kipf and M. Welling, "Semi-Supervised Classification with Graph Convolutional Networks," ICLR 17
[*] S. Kumar, X. Zhang, and J. Leskovec, "Predicting dynamic embedding trajectory in temporal interaction networks,", KDD 19

University of Iowa COMP CONC computational epidemiology research

Patient embedding (unsupervised)

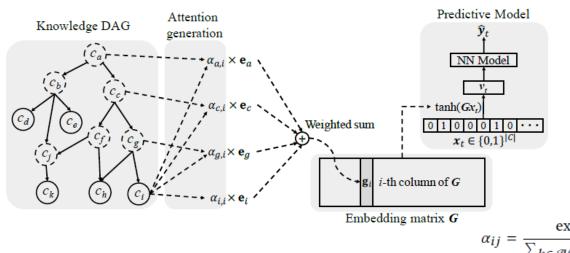


Med2Vec: *patient visit embedding* is learned by maximizing the likelihood of observing nearby visits

DeepWalk	Med2Vec
Node	Patient visit
Nodes in Random walk	Nearby visit

E. Choi et al., "Multi-layer representation learning for medical concepts," KDD '16

Patient embedding (supervised)



GRAM: Learn patient embedding by end-to-end classification task on the onset of a disease

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t = \tanh(\mathbf{G}[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t]),$$

$$\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_t = \operatorname{RNN}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t, \theta_r),$$

$$\widehat{\mathbf{y}}_t = \widehat{\mathbf{x}}_{t+1} = \operatorname{Softmax}(\operatorname{Wh}_t + \mathbf{b}),$$

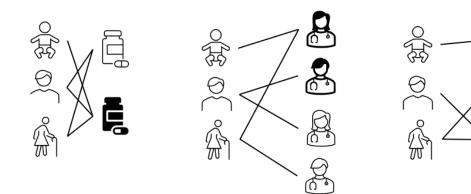
Learn *medical concept embedding* during training

$$= \frac{\exp(f(\mathbf{e}_i, \mathbf{e}_j))}{\sum_{k \in \mathcal{A}(i)} \exp(f(\mathbf{e}_i, \mathbf{e}_k))} \qquad f(\mathbf{e}_i, \mathbf{e}_j) = \mathbf{u}_a^{\mathsf{T}} \tanh(\mathbf{W}_a \begin{bmatrix} \mathbf{e}_i \\ \mathbf{e}_j \end{bmatrix} + \mathbf{b}_a)$$

E. Choi et al., "Gram: graph-based attention model for healthcare representation learning," KDD 2017

University of Iowa

Patient embedding (dynamic)



DECEnt: Learns patient embedding and {doctor, medication, room} embedding over time

Architecture: Auto-encoding heterogeneous co-evolving dynamic neural network

Optimize on reconstructing current interaction item

For each interaction (e.g., patient-doctor) DECEnt reconstructs **current interaction item** (e.g., doctor) via auto-encoder

H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", in submission

R1

R2

R3

Patient embedding (dynamic) – results



Detecting patients who will get transferred to medical ICU a day before the event

H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", in submission

Patient embedding (dynamic) – results

Method	AUC		
RNN	0.56 (0.119)		
\mathbf{LSTM}	0.585(0.103)		
-	LR	RF	MLP
Domain	0.655(0.123)	0.709(0.104)	0.582(0.137)
DEEPWALK	0.494(0.087)	0.487(0.093)	0.492(0.103)
Node2Vec	0.453(0.098)	0.43(0.106)	0.478(0.1)
CTDNE	0.463(0.101)	0.528(0.079)	0.483(0.116)
JODIE	$0.552 \ (0.192)$	0.377(0.177)	0.469(0.176)
DECENT	0.732(0.069)	0.711(0.08)	0.668(0.082)
DECENT +	$0.736 \ (0.064)$	0.717(0.078)	$0.664\ (0.091)$

^aThe value in bold denotes best performance

Detecting patients who will get CDI 3 days prior to the event

H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", in submission

Patient embedding (dynamic) – results

Method	Mortality	Severity
RNN	0.276(0.039)	0.31(0.032)
LSTM	0.289(0.033)	0.308(0.026)
Domain	$0.22 \ (0.017)$	0.258(0.007)
DeepWalk	0.172(0.034)	0.192(0.019)
Node2Vec	0.172(0.02)	$0.196\ (0.009)$
CTDNE	$0.184\ (0.019)$	0.199(0.007)
JODIE	$0.143\ (0.039)$	0.193(0.014)
DECENT	$0.421 \ (0.027)$	0.34(0.014)
DECENT+	$0.428 \ (0.022)$	$0.349 \ (0.015)$

^aThe value in bold denotes best performance

Average F1 Macro scores on predictive tasks of mortality and severity risk of a patient

H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", in submission

Thank you!

