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Motivation for learning representations of patients
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What we want to capture in the embeddings
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DECEnt: Dynamic Embedding of healthCare Entities
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DECEnt is a general-purpose, unsupervised embedding method for dynamic and heterogenous interactions

= DECEnNt preserves information on the interaction via interaction type specific autoencoder

= DECEnt guides the embedding to capture domain knowledge



Problem formulation

Given

= AsetS of time-stamped interactions among
healthcare entities

= Static networks Gypom, Gmed, aNd Ggoc

» Dynamic and static attributes of patients p and p
Learn dynamic embeddings for each time t

= ¢, foreachentityu € P

" ¢, foreachentityvEDUM UR

Such that

* f(éyt, é,¢) encodes information to be predictive of v

= dist(é,;,é, ) of the same type v and v’ reflects the
distance between the two in Gentitytype
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Notations

= P :asetof patients

= D :asetof doctors

= M :asetof medications

= R :asetofrooms

" (40c:agraph of doctors

" (meq- a graph of medications

" Groom: a 8raph of hospital rooms

" &, ¢ dynamic embedding of u at time t
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DECEnt — high level overview

= The learning process is patient centric
= Whenever an interaction (e.g., patient p —doctor d) occur at time t, we
— project patient p’s embedding at the time of t — A (p’s previous interaction time) to t™ for (t — A< t™ < t)
— update p’s embedding at time t~ to time t via the module PM,,
— update d’s embedding at time t~ to time t in the module PM
= While ensuring
— Temporal consistency: dynamic embeddings do not change drastically
— Reconstruction: we preserve each interaction information by reconstructing the embedding of the entity

— Domain knowledge: we guide that similar nodes (in terms of domain knowledge) to have similar embeddings
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Project patient’s embedding

= For aninteraction made at time t 4+ A, we need patient’s dynamic embedding at time t + A
= However, the patient’s embedding would have changed from the patient’s previous interaction at time t

= To model this, we project the patient embedding at time t to t + A by a projection module [+]

ép,f—l—ﬁ — (]_ -+ W x A) * ép,t
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[+] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding trajectory in temporal interaction networks,” in ACM SIGKDD, 2019




8/19

Update dynamic embeddings of patient and entity

= For a physician interaction (p,d, t) e PR, we update dynamic embeddings of patient and physician

= We model this via a co-evolutionary neural network (physician module)

€pt = O [W;}:M [ép,t_ | éd,t— | Apt | Pp | Pp,t] + B;I:M]

Q
B gﬂf] Eﬁ:}

* The medication module and the transfer module are defined accordingly

~ PM -~ ~ ~
eas = Wi g, | &, | Aac | Pp | By

= We don’t want the dynamic embeddings to change drastically, so we minimize the temporal consistency
loss, defined as the following: N
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Reconstruct static and dynamic embedding of entity

= For a physician interaction (p,d, t) e PR, we preserve the information by reconstructing the dynamic and
static embedding of the doctor

= \We model this via an autoencoder (reconstruction module)

— Our autoencoder is different from vanilla auto encoder that it takes patient information as input as well

i

€ = W [ép7t5 | €, | Pp

€u s | E‘d] + Ba

* The reconstruction module for medication and room interaction are modeled accordingly

= Reconstructionloss
: [Project user’s embedding] [Reconstruct current item] [Update embeddings]
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Capture domain knowledge

= We ensure that the entities known to be similar as per domain
knowledge to have similar embeddings

= We compute Laplacian matrix for each entity graph (edges denote
similarity)

» Then, compute the graph Laplacian based domain specific loss
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Overall loss and training

= We jointly train all the modules, and the overall
loss is the weighted aggregation of

— L¢emp: Temporal consistency loss
— Lyeconst: Reconstruction loss

— Lgom: Domain specific loss

11/19

= Training details
— Adam optimizer. learning rate (1e-3) decay (1e-5)
— Dynamic embedding size: 128
— Epochs: 1000 (early stopping. patience 10 epochs)



Data

= Three months of timestamped patient-entity
interaction data at hospital, captured from

— Electronic health records

— Admission-discharge-transfer logs

Unique counts
(in K)

Interaction with patients
(in K)

Patient 6.5 -
Doctor 0.6 23.1
Medication | 0.7 349.3
Room 0.6 16.7
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Entity Graphs

" Gaoc(D,E o) : Graph of doctors, where
(d{,d,) € E g, are based on the proximity
of specialty of doctors dyand d,

" Gmed(M UM, E,,.q) : Hierarchy (tree) of
medications M and their subtypes (M). Each
leafm € M in G4 denote medication

" Groom (R, Eroom) : Graph representation of
hospital rooms. (1y,73) € Eyyom denote the
physical proximity of rooms r;and r,



Application1l: MICU transfer prediction

= Forecast whether a patient is at risk of transfer to a Medical

Intensive Care Unit (MICU)

= MICU provides care for patients at a critical stage

— an early indication of potential MICU transfer helps hospital

officials allocate resources better

= Binary classification problem

— Label: Indication of patient transfer into MICU the next day

Instance: Patient at time ¢

Feature: Patient’s embedding

TPR
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Application 2: CDI Prediction

= Early detection of an healthcare associated
infection (HAI) is critical to prevent infection
spread

= (Clostridioides difficile infection (CDI) is one of
a common HAI, increases mortality risk of
patients with weakened immune system

= Binary classification problem
— Instance: Patient at time t
— Feature: Patient’s embedding

— Label: indication of patient getting CDI
within the next 3 days [+]
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Method AUC
RNN 0.56 (0.119)
LSTM 0.585 (0.103)
- LR RF MLP
DOMAIN 0.655 (0.123) | 0.709 (0.104) | 0.582 (0.137)
DEEPWALK | 0.494 (0.087) | 0.487 (0.093) | 0.492 (0.103)
NODE2VEC | 0.453 (0.098) 0.43 (0.106) 0.478 (0.1)
CTDNE 0.463 (0.101) | 0.528 (0.079) | 0.483 (0.116)
JODIE 0.552 (0.192) | 0.377 (0.177) | 0.469 (0.176)
DECENT 0.732 (0.069) 0.711 (0.08) 0.668 (0.082)
DECENT + | 0.736 (0.064) | 0.717 (0.078) | 0.664 (0.091)

aThe value in bold denotes best performance

[+] M. Monsalve, S. Pemmaraju, S. Johnson, and P. M. Polgreen, “Improving risk prediction of clostridium difficile infection using temporal

event-pairs,” in IEEE ICHI, 2015.




Application 3: Mortality and Case Severity Risk Prediction

= Predicting case severity and mortality while the
patientis in the hospital has many applications

— Personalized patient care
— Resource allocation

= The Agency for Health Research and Quality (AHRQ)
performs mortality and severity analysis of inpatient
visits across hospitals in US

= Multi-class classification problem
— Instance: Patient on the last day of the visit
— Feature: Patient’s embedding

— Label: one of ‘minor’, ‘moderate’, ‘major’, ‘extreme’
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Method Mortality Severity
RNN 0.276 (0.039) 0.31 (0.032)
LSTM 0.289 (0.033) | 0.308 (0.026)
DOMAIN 0.22 (0.017) 0.258 (0.007)
DEEPWALK | 0.172 (0.034) | 0.192 (0.019)
NODE2VEC 0.172 (0.02) 0.196 (0.009)
CTDNE 0.184 (0.019) | 0.199 (0.007)
JODIE 0.143 (0.039) | 0.193 (0.014)
DECENT 0.421 (0.027) 0.34 (0.014)
DECENT+ 0.428 (0.022) | 0.349 (0.015)

aThe value in bold denotes best performance

F1 Macro
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Case study on doctor embeddings: dispersion score

= We compute dispersions for subsets of healthcare Doctors that interacts with wide variety of
entities patients have small dispersion score with others.

E.g,

— General internal medicine

= We partition doctors D into disjoint sets. E.g.,

— Dy: set of general internal medicine physicians

— D,: set of Otolaryngologists (ears, nose, throat) — Anesthesia

= Doctors that (i) tend not to require referral to
other specialties or (ii) their unit is far away from

= Then, we compute pairwise doctor dispersion other units have large dispersion score with
between D; and Dj others. E.g.,

ZdeDi,d’eDj Héd,t - éd,ytHQ - Famlly Practice

'D;| - |D;| — Otolaryngology (ears, nose, throat)

dispp (i, 7) =

» The dispersion score provides a measure of avg. — Pediatrician
distance between doctors from different
specialties in the computed embeddings
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Case study on doctor embeddings: 2-d projection

= 2-d projection [+] of doctor embeddings of
— General internal medicine (small dispersion score with others)

— Pediatrics (large dispersion score with others)
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[+] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” JMLR, 2008.



18 /19

Conclusion

We propose DECEnt, a method for learning embeddings of nodes in dynamic, heterogeneous interactions

DECEnt enables several healthcare predictive modeling applications
— Adverse event
— Early detection of healthcare associated infection

— Case severity and mortality prediction

DECEnt outperforms state-of-the-art baselines in all the healthcare predictive modeling tasks we consider

Our embeddings are interpretable and meaningful
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Back up slides



Problem formulation

Given

= AsetS of time-stamped interactions among
healthcare entities

= Static networks Gypom, Gmed, aNd Ggoc

» Dynamic and static attributes of patients p and p
Learn dynamic embeddings for each time t

= ¢, foreachentityu € P

" ¢, foreachentityvEDUM UR

Such that

* f(éyt, é,¢) encodes information to be predictive of v

= dist(é,;,é, ) of the same type v and v’ reflects the
distance between the two in Gentitytype
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Notations

= P :asetof patients

= D :asetof doctors

» M :asetof medications
= R :asetof rooms

" Gaoc(D,E oc) : Graph of doctors, where
(d{,d,) € E 4, are based on the proximity
of specialty of doctors dyand d,

" Gmed(M UM, E,,.q) : Hierarchy (tree) of
medications M and their subtypes (M). Each
leafm € M in G,,0.q denote medication

" Groom (R, Eroom) : Graph representation of
hospital rooms. (1y,7,) € E,yom denote the
physical proximity of rooms ryand r,
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Dynamic embedding methods and limitation

= The core of the learning methods for dynamic embedding is temporal link prediction [+]
— Where given an interaction of a user-item (e.g., user purchasing an item)
— Predict the next item that the use is likely to purchase (predicting user’s decision)
= This temporal link prediction doesn’t seem to be that applicable in learning patient embedding
— E.g., a patient’s next interaction entity is not based on the patient’s decision
— Rather, a better way would be to preserve the current information
— We embed the information using autoencoder
= We have domain knowledge to consider for patient embeddings
— We need some flexibilility (e.g., a regularizer) in the dynamic embedding

— We model this by graph Laplacian regularization on the graphs of healthcare entities

[+] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding trajectory in temporal interaction networks,” in ACM SIGKDD, 2019
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Discussion & limitation

= Limitation in the patient—doctor interaction data
— Currently, the data is processed from procedure data
— We can extract richer set of data using clinical notes

= |ncorporate clinical notes data in the learning procedure



Application1: MICU transfer prediction

TPR
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MICU transfer ROC (MLP)
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HAIs are threat to patients

= Healthcare-associated infections (HAIs): infections that occur during care
= Eachyear, ~ 4% of patients in the US are diagnosed with infection during their care in the hospital [*]
= Patients in hospitals are typically susceptible to HAls
— Healthcare facilities are interested in preventing HAls
= However, there are challenges in designing effective interventions
Realistic disease modeling and simulation due to Missing infections Other challenges
Complex nature of disease Heterogeneity in contacts Symptomatic Asymptomatic * Disease specific feature
Airborne @ (not recorded) (Latent spreaders) engineering
el R A @-@—/@ w AR «  Environment-mediated
e ST« o) e 0 ) 0 &-06 . infectious diseases
A= ory A ~ 9'-\9/ Infection Source * Non-tree like cascade
Peposiion N CONtact  senavior,f <L/ )\
Contaminated |+====~ s WO
[ .,
®-®-0-®

[*] Centers for Disease Control and Prevention (CDC), "Healthcare-associated infections (hais)," https://www.cdc.gov/winnablebattles/report/HAls.html.
[-] Gameiro da Silva, M. An analysis of the transmission modes of COVID-19 in light of the concepts of Indoor Air Quality. Doi: 10.13140. 2020
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Paper: Dynamic healthcare embeddings for improving patient care
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[+] H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", IEEE/ACM ASONAM 2022
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Paper: Dynamic healthcare embeddings for improving patient care

Domain specific loss Temporal consistency loss
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[+] H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", IEEE/ACM ASONAM 2022
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Paper: Dynamic healthcare embeddings for improving patient care

MICU transfer prediction

CDI prediction

1.0

Mortality and severity prediction

DECEnt+ (AUC: 0.928)
DECEnt (AUC: 0.913)
JODIE (AUC: 0.844)
CTDNE (AUC: 0.307)
DeepWalk (AUC: 0.487)
node2vec (AUC: 0.524)
Domain (AUC: 0.873)
RNN (AUC: 0.844)
LSTM (AUC: 0.716)

TPR

Hfr‘

Method Mortality Severity
RNN 0.276 (0.039) 0.31 (0.032)
LSTM 0.289 (0.033) | 0.308 (0.026)
DOMAIN 0.22 (0.017) | 0.258 (0.007)
DEEPWALK | 0.172 (0.034) | 0.192 (0.019)
NODE2VEC 0.172 (0.02) | 0.196 (0.009)
CTDNE 0.184 (0.019) | 0.199 (0.007)
JODIE 0.143 (0.039) | 0.193 (0.014)
DECENT 0.421 (0.027) 0.34 (0.014)
DECENT+ | 0.428 (0.022) | 0.349 (0.015)

0.6 0.8
FPR

[+] H. Jang, S. Lee, H. Hasan, S. Pemmaraju, B. Adhikari, "Dynamic Healthcare Embeddings for Improving Patient Care", IEEE/ACM ASONAM 2022

1.0

Method CDI
RNN 0.56 (0.119)
LSTM ﬂ 18r (0.103)
DOMAIN 5 (0.123)
DEEPWALK ﬂ 4@4 (0.087)
NODE2VEC )3 (0.098)
CTDNE ﬂ 4ﬁ (0.101)
JODIE 0.552 (0.192)
DECENT 0.732 (0.069)
DECENT + 0.736 (0.064)
*The value in bold denotes best perlormance

#The value in bold denotes best performance




