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Abstract

Identification and localization of ambulance sirens is
an imperative feature especially for automated cars.
Existing detection systems involve either training on
highly specialized data or through expensive computa-
tion. Ambulance siren detection requires high precision
and rapid classification such that the self-driving vehi-
cles can abide to the rules of the road and accommodate
emergency situations on the road. In this paper we ex-
plore a fast singular vector model classification method
based on non-negative matrix factorization (NMF) and
support vector machines (SVM). We train a dimension-
ality reduction model using our limited set of training
ambulance signals that is sufficient to detect the pres-
ence of ambulance sirens in noisy signals. With the set
of basis vectors, we perform localization with micro-
phones in a triangle configuration. Our experiment on
simulated data shows that our technique is capable of
detecting and accurately estimating the location of the
ambulance.
Keyword: non-negative matrix factorization, support
vector machines, signal detection, localization

Introduction
With self-driving cars rising in popularity, it is crucial that
the autonomous vehicles be able to discern an approaching
ambulance and yield to make way. Due to the weight of the
emergency situation, it is of utmost importance we detect
siren signals at a rapid pace and deduce where it is coming
from. In this paper, we introduce our approach of integrating
signal detection with localization to address this problem.

Signal detection refers to the problem of identifying and
discerning between the signals from noises. Localization
aims to estimate the location from which a signal is originat-
ing from. These are indispensable features in sound process-
ing systems including robust speech recognition (Karray and
Martin 2003) and application of antennas in wireless com-
munications (Godara 1997).

Research in recent years have focused on develop-
ing robust signal detection systems. Supervised and semi-
supervised approaches train on mixtures of signals and noise
that are matched or determined to be similar to that of the
application and have been labeled with their corresponding
activities (Guizhongz, Engineering, and Engineering 2002)

(Sohn 1999). Since these methods require specialized train-
ing data that are difficult to obtain, unsupervised learning
methods (at the users perspective) have been developed. One
such method constructs a universal speech model (Germain,
Sun, and Mysore 2013) through NMF and training on clean
speech from a number of speakers.

Several methods have been proposed for localization (Su,
Su, and Morf 1983) (Wang 1985). One such method is MU-
SIC (MUltiple SIgnal Classification) with Coherent Signal
Subspace(CSS) (Wang 1985) which is an effective method
with high spatial resolution. The disadvantages are that the
a priori of an approximate localization estimate is required
and the pre-estimation accuracy effects the final estimation
result. Another method is array processing for estimating the
location. The performance for this approach improves as the
number of sensors are increased; however, in practical use
this poses a huge limitation due to the physical size of the
apparatus on which the equipments are placed.

A feasible proposed method utilizes a triangular micro-
phone configuration. Through this configuration, a uniform
resolution with respect to the location can be achieved. Each
microphone pair faces to different angles, which allows us to
expect improvement in the resolution through integration of
the array data at these three pairs. Furthermore, this method
will not require any a priori location by using the subspace
analysis of the integrated array data (Hioka and Hamada
2004).

We explore a classification and localization method us-
ing a fast singular vector model classification method based
on NMF and the triangular microphone configuration. The
model of the ambulance siren is trained by retrieving a gen-
eral basis vector of an ambulance signal through NMF. The
robustness of our detection system will be tested using a set
of test samples that mimic the real world situation. The mi-
crophones positioned at vertices of a triangle will pick up
the same signals that are shifted in time depending on the
distance of the ambulance to each vertex, from which we
finally estimate the location.

Identification
Identification of siren signals and distinguishing them from
noises is a non-trivial task. Not only are there numerous vari-
ations of siren signals, but there could also be infinitely dif-
ferent noises present in the scene of recording.



We approached the identification sub-task by employ-
ing feature extraction with non-negative matrix factoriza-
tion (NMF) followed by classification via support vector ma-
chines (SVM). The assumption that samples lie on a lower
dimensional subspace is made. NMF is performed for our di-
mensionality reduction procedure. It was deduced that NMF
would be advantageous for our task compared to other ma-
trix factorization methods such as principle component anal-
ysis (PCA) since NMF does not necessitate orthogonality in
the basis vectors and still manage to find a new subspace re-
gardless. For classification, we performed SVM. The dataset
was gathered and labeled manually to pose this as a super-
vised learning problem. The SVM algorithm will build a
model to assign the data samples into categories, ambulance
or “others”, to perform the classification task.

Data
The dataset was split into two for the identification proce-
dure; training and testing data. The audio samples were col-
lected from online sources and real ambulances passing us
by. Since most of the sirens were not recorded in a con-
trolled environment, other noises were mixed, making our
data “dirty”. This poses a difficulty in our procedure; there-
fore, we broke our collected data into 1-second chunks and
labeled them manually. The manual labeling process was
done by listening to each sample and labeling them into
either ambulance or “others” classes using our subjective
judgment. If a 1-second audio sample was judged to contain
a portion of a siren signal, we labeled it as an ambulance.

Training Procedure
The training procedure is divided into two parts: learning the
dimensionality reduction model and training the classifier.
To learn the dimensionality reduction model, we took all the
1-second chunk samples that are labeled as an ambulance
and concatenated them together into a long audio sample, S.
We proceeded to train an NMF model M out of S, which
was then used by the classifier to extract features from input
signals (Figure 1 a). Instead of working on the raw 1-second
signals, the classifier trains and tests on features extracted by
M (Figure 1 b). We use SVM as our classifier with penalty
parameter C of 1000, which we found works best in our
training and testing dataset.

Testing Procedure
Upon completion of the training step, we proceed to testing
(Figure 1 b). To simulate the process of real-time identifica-
tion, we tested on 3 moderately long samples: only ambu-
lance siren signals, only noises, and a mixture of both. The
classifier works on 1-second segments of the long samples;
thus, we slid the classifier over the samples at 250ms inter-
vals. In order to smooth the detection, we introduced tran-
sition probability priors. We assigned a 0.5 transition prob-
ability for ambulance sirens to emerge from noise. On the
other hand, given an ambulance siren has been detected and
noise detection occurs, we assign a 0.1 transition probability
from ambulance to noise. The results for the testing can be
seen in Figure 2.

(a) Learning NMF model

(b) Classifier

Figure 1: Training Testing

On only ambulance siren data, the detection is almost con-
sistent except for a few time steps (Figure 2 a). This ap-
plies for the detection accuracy on only noises, which was
represented by traffic sounds (Figure 2 b). The misclassifi-
cation was expected to have occurred due to the presence
of an actual ambulance siren in the background or a sound
signal resembling that of a siren. On mixed data samples,
the detection system performed relatively well (Figure 2 c).
The audio file shown in the figure begins with an ambulance
siren with traffic noises and the siren persists with additional
loud honking noises. The “dips” in the explained by the loud
honking noises interfering with the detection of the consis-
tent ambulance siren signal.

Localization
The recording configuration contains three microphones
1,2, and 3, circumcenter C, ambulance A, distance dc, and



(a) Detection on ambulance signal

(b) Detection on noises

(c) Detection on mixed signal

Figure 2: Testing results

the direction Θc (Figure 3). Our objective is to calculate dc
and Θc from the ambulance signals captured at the micro-
phones at the vertices.

Notation
• R12: distance between 1 and 2

• R23: distance between 2 and 3

• R31: distance between 3 and 1

• r: radius of the circumcircle

• d1: distance between 1 and A

• d2: distance between 2 and A

• d3: distance between 3 and A

• dc: distance between C and A

• ∆d12, ∆d23, ∆d31: d1 - d2, d2 - d3, d3 - d1

• Θ12, Θ23, Θ31: 6 1A2, 6 2A3, 6 3A1

• ΘC1, ΘC2: 6 CA1, 6 CA2

• Θc: direction from C to A

Figure 3: Diagram of the Experiment

Calculating d1, d2, and d3
To get dc, we calculate d1, d2, d3. Then, we express d1 =
d2 + ∆d12 and d3 = d2−∆d31 to reduce the number of un-
known variables. Then, we focus on three triangles 4A13,
4A23, and4A12. Using the fact that Θ12 = Θ23 + Θ31, we
derive the cosine of that angle.

cos(Θ12) = cos(Θ23 + Θ31)

= cos(Θ23) ∗ cos(Θ31)− sin(Θ23) ∗ sin(Θ31)
(1)

Since sine can be expressed in cosine, formula (1) can be
expressed with only using the edges of the three triangles.
Cosine rule is used here for each triangle. Hence we have
one formula with one unknown variable d2. We calculate d2
using the quadratic formula. From d2, we get d1 and d3.

Calculating dc and Θc

We focus on three triangles4CA1,4CA2, and4A12. Us-
ing the fact that Θ12 = ΘC1 + ΘC2, we derive the cosine
of that angle. Note that r can be calculate using the sine
rule of the4123. Similar to the above formula (1), we have
one formula and one unknown variable d0. Hence we use
the quadratic formula to calculate dc from the following for-
mula:[
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Then we calculate Θc by focusing on4CA1 and4C12.
We have all the edges, thus we use the cosine rule to cal-
culate the angles in these two triangles. From them, we get
Θc.



Experiment
Given the formula to calculate dc and Θc from recordings
of signals from three different microphones, we simulated
the localization step of the ambulance siren signal. We used
44.1kHz sampling rate for the experiment. Thus, the time
step for the recording is 1

44100 s. Sound travels 343m/s, which
means for each time step for the recording, sound travels
343

44100m. We used 441Hz beep sound as the replacement of
the ambulance sound, which means the period is 1

441 s. Since
the recording is using 44.1kHz sampling rate, there are 100
time steps in one period computed from period / time step.

From the above information, The sound is deduced to
travel at approximately 0.85m in one period computed from
100 time steps * speed of sound in one time step. Hence,
the location of the three microphones needs to be carefully
chosen: R12, R23, and R31 should not exceed 0.78m. In the
experiment, we used an equilateral triangle with R12, R23,
and R31 equal to 0.75. In this setting, the distance differ-
ences ∆d12, ∆d23, and ∆d31 is in one cycle.

Figure 4: Three microphone recordings

The ambulance was assumed to be far behind the car.
Then, ∆d12 ≈ 0 and ∆d31 ≈ 0.75 *

√
3
2 . This ∆d31 was

approximated by 83 * timestep * speed of sound difference
of the two input waves in microphone 3 and microphone 1.
In the experiment, we created various shifted versions of the
input signal, and fed them to the model we created above to
get the distance and the direction from the ambulance to the
circumcenter. The three input waves are depicted in Figure 4.
In this setting the model found the position of the ambulance
from distance of 10m and the direction of 90 degrees.

Conclusion
We have presented a method based on non-negative ma-
trix factorization for ambulance siren detection that trains a
model by retrieving a general basis vector of the ambulance
signal. Upon detection, localization is performed through the
triangular placement of microphones.

Physical experiments were conducted and exposed limita-
tions in the realistic domain. Each experiment instance was

initiated with an initial beep sound in the center of the tri-
angle. The objective was to coordinate the beginning of the
recordings of the three microphones due to the lack of a de-
vice that could record simultaneously from three sources.
Theoretically sound, however practically it posed difficult to
place the beep sound directly in the center. When the begin-
ning of each recording (from each vertex) was shifted to the
unequal detection of the beep, the siren signals were shifted
equivalently which distorted their corresponding time of
siren signal arrivals. For testing purposes, we thus ran the
simulated experiments.

Our experiments on simulated data show that our ap-
proach performs as expected. It is important to note, how-
ever, that the training data is not comprehensive and fur-
ther simulations with higher sampling rate is needed. For
44.1kHz, the signals travel fast making it hard to get di-
verse ∆d distances. Also, additional physical experiments
need to be conducted. The reason being real-time siren de-
tection and localization will require more analysis and filter-
ing. We believe that more precise equipment and averaging
over repeated instances will make a physical detection and
localization system possible. However, we defer this for fu-
ture work.
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