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Abstract

We are living in a highly non-stationary world where
we learn to adapt to the changes in dynamics. Besides
human, there are robots on the streets interacting with
the world. In this paper, I introduce Bus Gridworld,
composed of bus route and walking path which a novel
way of creating a non-stationary environment in tabu-
lar setting, that can be used to test the adaptability of
the agents on the non-stationary environment. The re-
sult shows that Dyna-Q and Dyna-Q+ agents adapt well
to the non-stationary environment, and Sarsa agent also
works well when promoted to explore at the time the
environment changed.

Introduction

Everyday life, we face changes of the dynamics in the world.
Assume we are on our way to the workplace. The weather
was beautiful when we started walking, but soon it starts
raining hard. We decided to take public transportation, but
the bus doesn’t arrive on time due to the heavy traffic caused
by the rain. Then we changed our plan and start walking to
our destination, where we see the bus passing by our way.
By the time we get to the workplace, we were late for work.
Hence, we failed to adapt to the changing world. If it rains
hard tomorrow, we may decide to wait for the bus according
to what we learned from today’s experience.

Like the human, there are robots on the streets facing the
changes in the environment. For instance, delivery robots are
on test in Redwood City, California, and Washington D.C.
Those robots deliver shopping bags of goods within walking
distance. Sometimes the shortcut road where the robot was
trained may be under construction, that leads the robot to
explore other routes to reach the destination. Or sometimes
a shortcut road can be constructed while not interfering the
previous road where the robot was trained. If this is the case,
it would be hard for the robot to find the shorter path since it
has no trouble on the current road.

In this paper, I introduce Bus Gridworld, composed of bus
route and walking path which a novel way of creating a non-
stationary environment in tabular setting, that can be used
to test the adaptability of the agents on the non-stationary
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environment. Several changes can be made in this simple
domain to generate the non-stationary world: (1) the start-
ing position, (2) the goal state, (3) the bus stop location, (4)
the bus speed, and (5) the obstacles that agents cannot pass
through. If there is a bus stop near the agent that leads to
the terminal state, the agent should decide to take the bus.
Otherwise, the agent should decide to walk.

I conducted experiments on the two different Bus Grid-
world to compare how well the agents adapt to the changes
in the environment. Five different agents were tested in
the analysis: (1)Sarsa, (2)Expected Sarsa, (3)Q-learning,
(4)Dyna-Q, and (5)Dyna-Q+. All the agents decided to ex-
plore when the shortest path, the path that includes riding the
bus, was hindered by deceleration of the bus speed. In this
case, planning agents adapted faster to the environment com-
pared to the non-planning agents. However, many agents
could not adjust to the world to find the shortest path when
the shorter route was created without interfering the current
shortest path. Only Sarsa agent adapted to the environment
when it was forced to explore more when the environment
changed.

Background
Markov Decision Process

When conducting a reinforcement learning experiment, one
needs to make sure that the task has Markov property. The
problem that satisfies this condition is called a Markov deci-
sion process (Sutton, Precup, and Singh 1999) where a state
s, action a, and following one-step dynamics is in existence.
For an agent given (s, a), the probability for the agent to be
at the next state s’ and reward r can be expressed by the fol-
lowing equation:
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Value Functions

The agents explore the environment to maximize the ex-
pected return. Hence, the agents need to figure out the state-
action pairs that maximize the expected return. This infor-
mation is collected as value functions where the value de-
notes the goodness of the action taken by the state. This
value function is deterministic for each policy 7, mapping
from (s, a) to the probability of taking action a when in state



s, the agent follows. Let ¢, (s, a) denote the value of taking
action a at state s following the policy 7. ¢, (s, a) is repre-
sented by the following equation:
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Here, E, stands for the expected value of the action taken
at state s at time step ¢ following the policy 7. ¢, (s, a) is
called action-value function for policy 7.

Policy

The agents learn action-value function following the given
policy. There are two types of policies: on-policy and off-
policy. For on-policy methods, the agents estimate g (s, a)
for all state-action pairs for the behavior policy 7. For off-
policy methods, the learned ¢ (s, a) directly approximates
the optimal action-value function ¢, which is independent
of its behavior policy.

Temporal-Difference Learning

Temporal-Difference Learning (Sutton 1988) agents update
gr(s,a) each step on the current prediction. Three TD
Learning agents have utilized in the experiment in this pa-
per: Sarsa, Q-learning, and Expected Sarsa.

Sarsa agent utilizes on-policy TD control method. Sarsa
agent continually estimate ¢, for the behavior policy 7 and
update 7 according to ¢,. Let Q. (S, A;) denote the array
estimates of action-value function ¢,. Then Q (S, A¢) is
updated each step by adding the following term:
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Q-learning (Watkins and Dayan 1992) agent utilizes oft-
policy TD control method . This method enables early con-
vergence. Here is the update term added at each step to up-
date Q (S, Ay):
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Expected Sarsa agent is similar to Q-learning except that
it utilizes the expected value of the next state-action pairs
other than taking the maximum of them. Expected Sarsa
could be classified to either on-policy or off-policy accord-
ing to the usage of the target policy 7 to generate the behav-
ior policy. Q,(St, A;) is updated at each step by adding the
following term:
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Planning

Apart from learning directly from interacting with the envi-
ronment like TD method, agents can model the environment
from the previous experience. Given the state-action pair,
the model outputs the next state and the reward. Given the
model, the agent can do planning which improves the policy
by interacting the modeled world from experience.

Initialize Q(s, a) and Model(s, a) Vs € S and Va € A(s)
while forever do
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Execute action A; observe resultant reward, R,
and state, S’
(d) Q(S, A) +
Q(S, A) + a[R + ymax, Q(5',a) — Q(S, A)]
(e) Model(S, A) + R, S’ (assuming deterministic
environment)
for n timesdo
end
S < random previously observed state
A + random action previously taken in .S
R,S" + Model(S, A)
Q(S, A) +
Q(S, A) + a[R+ymax, Q(S’,a) — Q(S, A)]
end
Algorithm 1: Tabular Dyna-Q

The planning agents utilize the learning method and the
planning method together to improve the model, the value
function, and the policy. Two planning agents are used in
this experiment: DynaQ and DynaQ+ (Sutton 1990) agents.

Dyna-Q agent has the following two sections, (1) direct
reinforcement learning and (2) model-learning. Direct rein-
forcement learning uses the same update rule with that of
Q-learning shown in Algorithm 1 part (d). Model-learning is
done by querying the previously observed state-action pair
with the following next state and reward shown in Algorithm
1 part (e). Dyna-Q+ agent adds the bonus reward term to
promote the exploration.

Bus Gridworld

0 1 2 3 4 5 6 7 8 9

100 11 12 13 14 15 16 17 18 @G

20 21| 22 23 24 25 26 27| 28| 29

30 31| 32|33 34 35 36 37 38] 39

40 41 | 42 | 43 44 45 46 47 48 | 49

§ 51 52 5% 54 55 56 57 58 59

60 61 82 B3 64 65 66 67 68 69

Figure 1: Bus Gridworld1

Here I introduce Bus Gridworld1 and Bus Gridworld2
of Figure 1 and Figure 2. Bus Gridworld is undiscounted,
episodic task, with start and goal states denoted as S and G.
The two bus stops are colored in orange, whereas the road
for the bus is colored in green. The reward is -1 for every
step to encourage the agent to explore. The states and ac-
tions are finite, where the agent can take one of five actions



10 11 12 13 14

&,

16 17 18 19

20 212223 24 25 26 27 2B | 29

30 31} 32|33 34 35 36 37| 38 39

40 41|42 43 44 45 46 47| 48| G

§ 51 52 53 54 55 56 57 58 59

60 81 82 63 64 65 66 67 68 69

Figure 2: Bus Gridworld2

at each step: up, right, down, left, and stay.

The agent cannot leave the gridworld and cannot enter the
bus road. Assume the agent’s state-action pair is (Ss4, Gup)-
Then, (s’, 1) = (854, -1). In Bus Gridworldl, if the agent is
at the bus stop and decides to stay, then the agent can take
the bus if the bus is currently at the bus stop. The (s, a) for
the agent to get into the bus stop are (S41, Aright) OF (S52,
Qyp)-

Bus Gridworld1 of Figure 1 is the easier version of the
environment for the agent to explore since one bus stop is
near the start state, and the other bus stop is near the goal
state. However, Bus Gridworld2 of Figure 2 is a more tricky
version since the bus stop is far from the start state. In Bus
Gridworld2, if the agent learned the short walking path from
the start state to the goal state, then it would be hard for the
agent to discover the bus stop, even for the agent using e-
greedy policy.

Experiments

The goal of the experiment is to understand what makes the
agent in general deal well with non-stationarity. Five agents
were tested in the experiment: Sarsa, Expected Sarsa, Q-
Learning, Dyna-Q, and Dyna-Q+. Dyna-Q architectures are
assumed to adapt well to the changing environment (Sutton
1990). The blocking experiment conducted on the naviga-
tion task (Sutton 1990) is similar to the decelerating the bus
speed. Hence Dyna systems in this setting are expected to
adapt to the change quickly. Likewise, the shortcut experi-
ment conducted on the navigation task is similar to acceler-
ating the bus speed. Thus Dyna-Q+ agent in this setting is
the only agent expected to adapt to the change.

I used RL-Glue (Tanner and White 2009) which provides
a standard interface that is used in experimenting reinforce-
ment learning problems. Two experiments were conducted
for each of Bus Gridworldl and Bus Gridworld2 to test
how robust the agents are to the changes in the bus speed.
€ was set to O for the experiments held on Bus Gridworld1,
since the bus stop at s is close to the walking path. Which
means, small ¢ may affect the performance of the agents
in finding the shortest path on Bus Gridworld1. Whereas, ¢
was set to 0.05 for the experiments held on Bus Gridworld2,
since the bus stop is far from the shortest walking path from

start to goal state. Even agents with e-greedy policy would
be hard to find the shortest path on Bus Gridworld2 if the
bus speed accelerated.

I experimented with various parameter sets for «, n, and
k to find the right parameters for each agent. « is used for
all the five agents, n for Dyna-Q and Dyna-Q+ agents, and
x for Dyna-Q+ agent only. Here are the different parameter
sets utilized in the experiment:

e «={0.050.1,0.2,04,0.3, 1.0}
o n=1{0,1,2,4,8, 16,32}
o r={e-02, 3e-03, e-03, 3e-04, e-04, 3e-05, e-05}
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Figure 3: Performance on the Bus Speed 8 — 1 task

Learning Curve: episode 2000 to episode 2200
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Figure 4: Performance on the Bus Speed 8 — 1 Task
After Change in the Bus Speed

Bus Speed 8 — 1 experiment was conducted on the Bus
Gridworld1 of Figure 1. Initially, when the bus speed was
8, all the agents found the shortest path by riding the bus.



DynaQ and DynaQ+ found the shortest path in 10 steps, fol-
lowed by Sarsa, Q-learning, and Expected Sarsa. After 2,000
episodes, by the time when all the agents greedily take the
bus to reach the terminal state, the bus speed was decelerated
to 1.

Figure 3 and Figure 4 shows the averaged results over 300
runs for the five agents. The graph demonstrates the number
of steps per episode. In the first 2,000 episodes, all the five
agents found the shortest route by taking the bus. After the
bus speed had decelerated to 1, the graph for Expected Sarsa
was three steps above other graphs near the 4,000 episodes,
showing that it was unable to find the shortest walking path.
DynaQ and DynaQ+ agents precisely solved the Bus Speed
8 — 1 experiment in less than 25 episodes, followed by
Sarsa and Q-learning agents.

Bus Gridworld1: Bus Speed 1 — 8

Learning Curve: Bus speed1 to speed8 at episode 2000
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Figure 5: Performance on the Bus Speed 1 — 8§ task

Learning Curve: episode 2000 to episode 2200
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Figure 6: Performance on the Bus Speed 1 — 8 Task
After Change in the Bus Speed

Bus Speed 1 — 8 experiment started with the bus speed

of 1. After 2,000 steps all the agents had learned to walk
the shortest path to the terminal state. Then the bus speed
accelerated to 8 creating the shorter path without interfer-
ing with the previously found shortest path. e was increased
artificially to 0.5 to promote the five agents to explore more
when bus speed had accelerated. From then, € was decreased
gradually by multiplying 0.95 per episode.

The Figure 5 and Figure 6 shows the results averaged
over 300 runs. In the first 2,000 episodes, all the five agents
found the shortest route by walking to the terminal state,
though DynaQ and DynaQ+ agents took around 30 steps
which are considerably faster than other three non-planning
agents. After the bus speed was accelerated to 8, Figure 6
shows that Sarsa agent started exploring more than 40 steps
per episode, taking much more steps compared to the other
four agents. As a result, Sarsa agent found the path to ride
the bus that ended up in 9 steps per episode. Expected Sarsa,
Q-learning, DynaQPlus agents also found a way to ride the
bus, but the result was not promising since the agents ended
up in 12 steps. DynaQ agent failed to locate the path to ride
the bus.

Bus Gridworld2: Bus Speed 8 — 1

Learning Curve: Bus speed8 to speedl at episode 8000
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Figure 7: Performance on the Bus Speed 8 — 1 task

Bus Speed 8 — 1 experiment was conducted on the Bus
Gridworld2 of Figure 2. Initially, when the bus speed was
8, all the agents found the shortest path by riding the bus. In
the first 8,000 episodes, a thick line represents that the agents
are exploring since the € of the agents is set to 0.05. DynaQ,
DynaQ+, and Q-learning found the shortest path in around
40 steps, followed by Sarsa, Q-learning, and Expected Sarsa.
After 8,000 episodes, by the time where all the agents were
relatively stable to take the bus to reach the terminal state,
the bus speed was decelerated to 1.

Figure 7 and Figure 8 illustrates averaged results over 300
runs for the five agents. The graph shows the number of steps
per episode. In the first 8,000 episodes, all the five agents
found the shortest route by taking the bus. After the bus
speed had decelerated to 1, DynaQ+ solved the Bus Speed
8 — 1 experiment in around than 30 episodes, followed by



Learning Curve: episode 8000 to episode 8200
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Figure 8: Performance on the Bus Speed 8 — 1 Task
After Change in the Bus Speed

Q-learning, DynaQ agents. Sarsa and Expected Sarsa were
slow in finding the shortest walking path here since they ex-
plored around 10,000 episodes.

Bus Gridworld2: Bus Speed 1 — 8

Learning Curve: Bus speed1 to speed8 at episode 8000
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Figure 9: Performance on the Bus Speed 1 — 8 task

Bus Speed 1 — 8 experiment started with the bus speed of
1. After 8,000 steps all the agents learned to walk the short-
est path to the terminal state. Then the bus speed accelerated
to 8 creating the shorter path without interfering with the
previously found shortest path. Unlike previous Bus Speed
1 — 8 held on Bus Gridworldl1, the € of the five agents stayed
the same. Hence they were not forced to explore more.

The Figure 9 and Figure 10 shows the results averaged
over 300 runs and then smoothed by the mean of the fol-
lowing 100 episodes. In the first 8,000 episodes, all the five
agents found the shortest route by walking to the terminal
state. After the bus speed accelerated to 8, the straight line
for Expected Sarsa agent of Figure 10 reveals that it was

Learning Curve: after episode 20000
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Figure 10: Performance on the Bus Speed 1 — 8 Task
After Change in the Bus Speed

unable to find the path to ride the bus. At around 20,000
steps, DynaQ agent found the way to ride the bus followed
by Sarsa, Q-learning, and DynaQ+ agents.

Result

In the experiment where the environment got worse, Bus
Speed 8 — 1, Dyna-Q agents quickly adapted to the world as
expected. However in the experiment where the environment
got better, Bus Speed 1 — 8, Dyna systems did not explore
much to find the shorter path. However, Figure 6 shows that
when the agents were given high e by the time environment
changed, Sarsa agent was able to find the shorter path.

From these experiments, I conclude that Dyna systems
generally adapt to the non-stationary environment faster
compared to other agents. However, if forced to explore
more by the time the environment changes, Sarsa adapted
to the environment better compared to the DynaQ+ Agent.
This result contradicts the feature of Dyna-Q architectures
that they are easy to adapt for use in changing environments
(Sutton 1990). The discrepancy is perhaps due to the sensi-
tivity issues of Dyna-Q agents.

Related Work

There have been needs for research in nonstationary envi-
ronment, but many researchers focused on the stationary en-
vironment due to the simplicity in the stationary environ-
ment as well as it being the prerequisite to handle the non-
stationary problem (Sutton, Koop, and Silver 2007). The re-
search in improving elevator performance proved that re-
inforcement learning has power in handling non-stationary
domain (Barto and Crites 1996). Likewise, reinforcement
learning approach showed the adaptability in scheduling
policies to dynamic workload behavior for self-optimizing
memory controllers (Ipek et al. 2008).

Some researchers compared robustness of the agents to
the changes on the environment by making one big change
in the environment, either make the environment better or
worse, which is similar to the experiment I conducted. One



research was done on navigation task where two experi-
ments, blocking the shortest path and creating a shortcut,
were held in three Dyna systems. All the Dyna systems
adapted to the blocking experiment but only the Dyna-Q+
agent successfully adapted to the shortcut experiment. (Sut-
ton 1990). Another comparative study was held on dialogue
management where the environment changed either to noise
free or noisy environment (Papangelis 2012). In the study,
Sarsa(\) and Q-learning agents adapted well to the changing
environment compared to Dyna-Q agent and other agents.

In practice, online learning approach is used to keep track
of the changing environment. However, many reinforcement
learning algorithms used in robotic platforms were trained in
offline such as improving gait of a robot dog (Kohl and Stone
2004), walking robot (Tedrake, Zhang, and Seung 2004),
swinging baseball task (Peters and Schaal 2008), and fly-
ing autonomous helicopter (Abbeel, Coates, and Ng 2010).
Some of the few approaches done in real-time reinforcement
learning in robotics are balancing task using actor-critic
methods (Benbrahim et al. 1992) and conventional mobile
robot (Bowling and Veloso 2003). Tile-coding architecture
with adaptive exploration adapted fast in a non-stationary
environment that could be used in practice (Degris, Pilarski,
and Sutton 2012).

Apart from waiting the agent to find the changes in
the environment, options can be given to the agents when
the environment changes. Some of the approaches are us-
ing Gradient-based approach in semi-Markov options (Co-
manici and Precup 2010) and on policy gradient methods
by treating stopping events as control actions (Levy and
Shimkin 2012). There are also some papers utilizing func-
tion approximation in option discovery (Daniel et al. 2016)
(Vezhnevets et al. 2016).

Conclusion

The experiments performed in the paper are restricted to the
two different non-stationary Bus Gridworld. Also the limited
number of the state-action pairs as well as the finite number
of parameter sets tried on the five agents may have affected
the result of the experiments. However, I showed that Bus
Gridworld creates non-stationary environment that could be
used in testing how well the agents adapt to the changing
environment. [ believe that more experiments such as using
options should be conducted on this domain to compare the
robustness of the agents on the non-stationary environment.
However, I defer this for the future work.
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