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ABSTRACT

Continual learning has emerged as a powerful approach to address

the challenges of non-stationary environments, allowing machine

learning models to adapt to new data while retaining the previ-

ously acquired knowledge. In time-sensitive healthcare applications,

where entities such as physicians, hospital rooms, and medications

exhibit continuous changes over time, continual learning holds

great promise, yet its application remains relatively unexplored.

This paper aims to bridge this gap by proposing a novel framework,

i.e., Continually-Adaptive Representation Learning, designed to

adapt representations in response to changing data distributions

in evolving healthcare applications. Specifically, the proposed ap-

proach develops a continual learning strategy wherein the context

information (e.g., interactions) of healthcare entities is exploited to

continually identify and retrain the representations of those entities

whose context evolved over time. Moreover, different from existing

approaches, the proposed approach leverages the valuable patient

information present in clinical notes to generate accurate and robust

healthcare embeddings. Notably, the proposed continually-adaptive

representations have practical benefits in low-resource clinical set-

tings where it is difficult to training machine learning models from

scratch to accommodate the newly available data streams. Experi-

mental evaluations on real-world healthcare datasets demonstrate

the effectiveness of our approach in time-sensitive healthcare ap-

plications such as Clostridioides difficile (C.diff) Infection (CDI)

incidence prediction task and medical intensive care unit transfer

prediction task.
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1 INTRODUCTION

Healthcare has emerged as a prominent domain for applied machine

learning research, primarily driven by the widespread availabil-

ity of fine-grained hospital operations data and advancements in

computing capabilities [30]. Researchers have approached various

healthcare challenges by formulating them as machine learning

tasks. Some common areas of focus in machine learning for health-

care research include assisting in predicting outcomes and risks [4],

disease diagnosis and monitoring [23], optimizing decision-making

processes [35], and enhancing workflow efficiency [20]. A precur-

sor to many of these healthcare applications is the availability of

pre-trained representations of healthcare entities. Representation

of healthcare entities, such as patients, doctors, rooms, and medi-

cations, can be learned from the diverse data streams by various

representation learning models such as Word2Vec [24], GloVE [29],

ELMo [28], or BERT [7]. These models can embed the discrete

entities into a continuous vector space as distributed, dense em-

beddings based on the distributional hypothesis that argues the

entities that occur in the same contexts tend to have similar seman-

tics [3]. While a majority of these representation learning models

approaches have been developed for a general domain, some recent

studies such as [5, 12, 37] have attempted to model the special prop-

erties of healthcare data and learn high-quality representations.

Despite significant advances made, the existing approaches have

two major drawbacks. First, the existing approaches fail to lever-

age the granular patient information such as patient complaints,

disease progression, treatment history, and other crucial informa-

tion present in clinical notes. Second, the existing approaches are

unable to continually (or incrementally) accommodate informa-

tion from newly available data streams. This becomes limiting in
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time-sensitive and resource-critical domains such as healthcare,

where the efficient adaptation of healthcare entities is of utmost

importance.

Prior research has attempted to learn adaptive embeddings through

a range of solutions such as knowledge distillation [9], weights prun-

ing [26], and continual learning [6]. Amongst them, the continual

learning-based approaches have attracted increasing interest from

the community due to their natural ability to adapt the representa-

tions to the continuous streams of data. However, directly applying

these approaches to the current problem setting would yield un-

satisfactory performance. This is because the existing approaches

are not designed to model the interaction among heterogeneous

entities. To address this, we propose a new continual representation

learning scheme that models the co-evolving dynamics of entities

and efficiently adapts the representations to the newly available

data streams. To effectively learn dynamic embeddings of healthcare

entities based on heterogeneous interactions, we design a dedicated

objective function for each component and then propose a joint in-

ference mechanism. Specifically, the proposed approach considers

the successive data snapshots as a sequence of related tasks and

updates the representations that are affected by the new snapshot

while preserving those that were well-trained previously. The main

challenge in this strategy is to automatically identify the entities

whose context (i.e., interactions) evolved over time and thus would

require retraining of representations. To address this, we propose

a scheme wherein at every new snapshot, we identify and retrain

the representations of those entities whose context evolved over

time. Following this strategy, the proposed technique is continually

(iteratively) applied to the consecutive snapshots, and the entity

representations are adapted. Moreover, as the proposed CL for-

mulation facilitates incremental updates of entity representations,

it effectively mitigates the expensive retraining of the proposed

model whilst acquiring information from data streams. One critical

issue in CL based approach is to prevent catastrophic forgetting, i.e.,

the model abruptly forgets knowledge learned from previous data

snapshots when learning on the new data snapshot. To overcome

this, we propose a regularization mechanism that constrains the

learned entity representations in the embedding space.

In this research, our contributions can be summarized as follows:

• We propose a new end-to-end continual learning framework

that updates the representations of healthcare entities in an

online fashion. This strategy greatly improves both the accu-

racy and computational efficiency of the proposed approach

whilst accounting for the time-sensitive nature of healthcare

applications.

• The proposed approach leverages the granular information

in clinical notes to learn semantically enriched, accurate, and

robust representations. This has immediate practical benefits

to a variety of downstream predictive health applications.

• Extensive experiments on real-world healthcare datasets

through the tasks of Clostridioides difficile (C.diff) Infection

(CDI) incidence prediction task and medical intensive care

unit (MICU) transfer prediction validates the effectiveness

of the proposed approach.

2 METHOD

Overview: Our neural network architecture consists of two pri-

mary components. The first component consists of dynamic co-

evolving neural networks [19], which are designed to learn mean-

ingful embeddings of entities (including patients, rooms, nurses,

doctors, etc.) encountered in healthcare facilities based on the ob-

served heterogeneous interactions (e.g., patient-is cared by-nurse,

doctor-prescribes-medication, nurse-visits-room interactions e.t.c.).

The second component further enhances the learned embeddings

by infusing the information extracted from clinical notes. Clinical

notes are written by healthcare providers, including doctors and

nurses, as they provide care to the patient, administer medication,

and/or perform procedures. These notes contain fine-grained infor-

mation about the patient’s medical progress. This additional wealth

of information can be extremely useful in foreseeing patient out-

comes and forecasting probable risk factors. In order to make use

of this data, our model uses a natural language processing model

to extract pertinent elements from clinical notes and merge them

with the embeddings learned from the interactions. By combining

both interactions and clinical notes, our model captures a more

comprehensive representation of the patient’s healthcare journey.

In healthcare applications, the data is continually generated as

patients receive care in the healthcare facility. Moreover, this sensi-

tive healthcare data is protected by the Health Insurance Portability

and Accountability Act (HIPPA) of 1996 in the United States [1].

The act mandates that healthcare providers do not disclose health-

related information to anyone other than the patient and authorizes

representatives. Due to government regulation and other data leak-

age risks, healthcare data is usually stored in low-access machines

to minimize the risk of unauthorized access.

The combination of a continual stream of data being generated

(which ought to be included for predictive healthcare applications)

and difficulty of access poses a conundrum; on the one hand, we

would like to train our model with the latest batch of data being

generated in near real-time, but on the other hand, the data cannot

be easily accessed to train large language-based models over and

over again. To address this, we adopt continually adaptive training

in which the model can easily integrate streams of newer data that

appear over time.

Overall, our proposedmodel leverages a set of co-evolving neural

networks to process heterogeneous interactions between health-

care entities and the natural language processing model to process

and extract fine-grained information from clinical notes to provide

a holistic view of a patient’s healthcare experience to enable more

accurate predictions in different downstream tasks and to provide

a better understanding of patient dynamics. Finally, we leverage a

continual learning framework to train the model on large batches of

sensitive clinical data in a temporally dynamic fashion while mini-

mizing access. In the next few sections, we describe the components

of our proposed model in detail.

2.1 Language Model Integration

We first describe the language model component. Here the goal

is to learn a low-dimensional representation of each clinical note

in the corpus while being sensitive to the semantic changes over
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Figure 1: Model figure. Our method is trained in a continual setting. Interactions that belong to a time window (e.g., T1+) are

processed in batches. Then, for interactions in the next time window (e.g., T1+), the model is trained to minimize continual

learning (CL) loss. Within each time window, the model utilizes (i) clinical notes to update patient embeddings and (ii)

heterogenous co-evolving networks that are reconstruction modules and update modules per interaction type.

time. We describe the process of combining node embeddings with

embeddings in a later section.

Creating Dynamic Word Vectors: Previous works by Yao et

al. [38], Gulordava et al. [10] and Sagi et al. [33] ascertain that

words which appear in documents undergo a semantic change as

time progresses. Intuitively, this observation seems to apply in the

medical setting as well. As newer diseases, medications, procedures,

and symptoms emerge, words associated with these concepts gain

new meanings/use cases and lose old ones. For example, Hydrox-

ychloroquine is a drug primarily used to treat malaria. However,

it gained traction as a drug that could cure COVID-19. Note that

the presence of the word ‘Hydroxychloroquine’ in a clinical note in

a pre-COVID era was a strong indication of malaria-related cases.

However, this may no longer be true in COVID/post-COVID era.

As evidenced by this example, we need to account for semantic

changes in the words themselves before we leverage them to learn

clinical note embeddings. Here, we address the concern by modi-

fying the original architecture of the BERT [7] by initializing the

model with learned word embeddings instead of random word em-

beddings.We use the popularDynamicWord2Vecmodel proposed

by Yao et al. [38] to learn the representations of words found in

clinical notes in evolving contexts. TheDynamicWord2Vecmodel

takes pre-processed (Stemming, tokenization, stop-word removal)

clinical notes as input and outputs dynamic embeddings of works.

The learned embeddings then initialize the BERT model.

BERT Model and Pre-training: After we obtain word embed-

dings for clinical notes in different periods, we learn clinical note

embeddings (a single embedding for each clinical note) by passing

the sequence of learned word embeddings through the BERT ar-

chitecture. However, contrary to the original architecture, we only

minimize the Masked Language Model Loss. This is because we

have removed all punctuation marks from the clinical notes during

our pre-processing step to learn word embeddings. The Masked

Language Loss is given by:

L𝐿𝑀 = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑝𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )] (1)

Here, 𝑦 denotes the true binary label of the word, and 𝑝 denotes

the predicted likelihood of the word given by the BERT model. N

denotes the total number of samples.

2.2 Construction of Dynamic Patient

Embeddings

We design a pair of co-evolving neural networks for each type of

entity (doctor 𝐷 , medication 𝑀 , or room 𝑅) with whom a patient

interacts in the healthcare facility. Let PR denote a set of patient

𝑝 - doctor 𝑑 interactions (𝑝, 𝑑, 𝑡), MD denote a set of patient 𝑝 -

medication𝑚 interactions (𝑝,𝑚, 𝑡), andTR denote a set of patient 𝑝

- room 𝑟 interactions (𝑝, 𝑟, 𝑡). Let GM𝑝 and GM𝑒 denote co-evolving

neural networks that update patient 𝑝’s embedding and entity 𝑒’s

embedding, respectively. Here, GM ∈ {PM,MM,TM}, where PM,

MM, and TM denote modules for PR, MD, and TR, respectively.
When a patient 𝑝 interacts with a hospital entity 𝑒 at time 𝑡 ,

we simultaneously update the patient’s embedding ê𝑝,𝑡 and the

entity’s embedding ê𝑒,𝑡 with GM𝑝 and GM𝑒 . Specifically, we use

their dynamic embeddings at 𝑡− , that is ê𝑝,𝑡− and ê𝑒,𝑡− , which is just
before time 𝑡 . We also use patient 𝑝’s static and dynamic features p𝑝
and p̂𝑝,𝑡 , respectively, to update both ê𝑝,𝑡 and ê𝑒,𝑡 . Finally, for GM𝑝 ,

we use the time elapsed from the patient 𝑝’s previous interaction

Δ𝑝,𝑡 , and for GM𝑒 , we compute time elapsed from the entity 𝑒’s

previous interaction Δ𝑒,𝑡 . Here are the update equations for GM𝑝

and GM𝑒 :

ê𝑝,𝑡 = 𝜎

[
WGM

𝑝 [ê𝑝,𝑡− | ê𝑒,𝑡− | Δ𝑝,𝑡 | p𝑝 | p̂𝑝,𝑡 ] + BGM𝑝
]

ê𝑒,𝑡 = 𝜎

[
WGM

𝑒 [ê𝑒,𝑡− | ê𝑝,𝑡− | Δ𝑒,𝑡 | p𝑝 | p̂𝑝,𝑡 ] + BGM
𝑑

] (2)

We use the symbol | to denote vector concatenation.𝜎 is a non-linear

activation function (e.g., tanh activation).WGM

𝑝 andWGM

𝑒 denote
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weight matrices that parameterize GM𝑝 and GM𝑒 , respectively, for

GM ∈ {PM,MM,TM}. BGM𝑝 and BGM𝑒 are bias for GM𝑝 and GM𝑒 ,

respectively.

Notice that a patient 𝑝’s embedding at time 𝑡− , that is ê𝑝,𝑡− ,
can be quite different from ê𝑝,𝑡−Δ𝑝,𝑡

if Δ𝑝,𝑡 is somewhat large. Our

model handles this using projection operation [19]. Specifically, we

project the 𝑝’s embedding from time 𝑡 − Δ𝑝,𝑡 to 𝑡
−
.

ê𝑝,𝑡− = (1 +W × Δ𝑝,𝑡 ) + ê𝑝,𝑡−Δ𝑝,𝑡
(3)

where W is a linear weight matrix.

Furthermore, we preserve the information on each patient 𝑝’s

interaction with other entity 𝑒 at time 𝑡− by reconstructing the

concatenation of 𝑒’s dynamic embedding ê𝑒,𝑡− and static embedding

ē𝑒 , that is of size |ê𝑒,𝑡− | + |ē|. To reconstruct ẽ𝑒,𝑡− , we use ē𝑒 , ê𝑒,𝑡− as

well as patient 𝑝’s information, such as 𝑝’s static features p𝑝 , static
embedding ē𝑝 and dynamic embedding ê𝑝,𝑡− . Note that we design
a reconstruction module for each entity RECONSTD, RECONSTM,

and RECONSTR for doctor, medication, and room, respectively. We

define RECONSTE for 𝐸 ∈ {𝐷,𝑀, 𝑅}:

ẽ𝑒,𝑡− = W𝑒

[
ê𝑝,𝑡− | ē𝑝 | p𝑝 | ê𝑒,𝑡− | ē𝑒

]
+ B𝑒 (4)

W𝑒 and B𝑒 are weight matrix and bias for RECONSTE.

2.3 Co- evolution with Clinical Notes

In addition to constructing dynamic patient embeddings based on

doctor, medication, and room interactions, we add information from

clinical notes by incorporating an evolving neural network archi-

tecture to update dynamic patient embeddings. Let NM denote

a set of patient p - clinical note n interactions (p,n,t). Contrary to

other types of hospital entity interactions, clinical note interactions

only update patient interactions and not vice-versa.

When patient 𝑝 gets a clinical note 𝑛 at time 𝑡 , we obtain note

embedding 𝑒𝑛,𝑡 from the modified BERT as mentioned in Section

2.1 We refine the latent space of BERT by minimizing the Masked

Language Model Loss L𝐿𝑀 . In addition, we obtain the note embed-

dings through a fine-tuning Feed-Forward layer. After obtaining

the note embedding, we update the dynamic embedding of 𝑝 via a

neural network 𝑁𝑀𝑝 :

ê𝑝,𝑡 = 𝜎

[
W

𝑁𝑀
𝑝 [𝑒𝑝,𝑡− | 𝑒𝑛,𝑡 | Δ𝑝,𝑡 | 𝑝𝑝 | 𝑝𝑝,𝑡 ]

]
(5)

where W𝑁𝑀
𝑝 denotes the weight matrix for 𝑁𝑀𝑝 and 𝑒𝑛,𝑡 denotes

the clinical note embedding obtained from BERT. Note that the

clinical notes co-evolution is jointly trained with other co-evolving

networks.

2.4 Continual- Learning Framework

We elaborate on the continual learning framework used to train the

model on data that appears in periods. Let {𝑃𝑒𝑟𝑖𝑜𝑑1, · · · , 𝑃𝑒𝑟𝑖𝑜𝑑𝑛}
and {𝜃1, · · · , 𝜃𝑛} denote a set of periods and the overall model

parameters, respectively. We train 𝜃1 as described in Section 2.2.

Given the model parameters 𝜃1 generated from 𝑃𝑒𝑟𝑖𝑜𝑑1 (via

constructing dynamic patient features), we propose to incremen-

tally account for the model parameters of the successive periods

by initializing the model parameters 𝜃𝑛 of 𝑃𝑒𝑟𝑖𝑜𝑑𝑛 with 𝜃𝑛−1 of

𝑃𝑒𝑟𝑖𝑜𝑑𝑛−1. The initialization scheme is motivated by a similar idea

given in [16] which aligns learned embeddings in the unified co-

ordinate space. We do the same to the model parameters of the

subsequent periods to enable continual knowledge infusion from

previous periods and reduce the time needed for retraining the

model parameters for data that appears in a new period.

However, even though this scheme works in reducing training

time and resources, a critical issue can be the phenomenon called

"catastrophic forgetting", a term that was first coined in [18]. As

the model is trained on the data from subsequent periods, the em-

bedding space of the model parameters may become distorted and

the model might forget information that it had learned earlier. So,

similar to the method proposed in [15], we minimize the variations

of the model parameters by introducing an additional loss called

continual loss (L𝐶𝐿) which minimizes the L2- norm between the

model parameters of the subsequent periods. The formula is given

below:

L𝐶𝐿 = 𝜆 | |𝜃𝑖 − 𝜃𝑖−1 | |2 (6)

where 𝜆 is a regularization hyperparameter.

2.5 Losses and Overall Training Scheme

In addition to the loss functions mentioned before, we also use the

below-mentioned losses in our overall heterogenous co-evolving

network architecture. They are as follows:

Reconstruction Loss: This loss computes the difference between

the predicted and the ground truth embeddings of the entity a

patient interacts with. It is written as:

L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =
∑︁

(𝑝,𝑑,𝑡 ) ∈𝑃𝑅



ẽ𝑑,𝑡− −
[
ê𝑑,𝑡− | 𝑒𝑑

]


2

+
∑︁

(𝑝,𝑚,𝑡 ) ∈𝑀𝐷



ẽ𝑚,𝑡− −
[
ê𝑚,𝑡− | 𝑒𝑚

]


2

+
∑︁

(𝑝,𝑟,𝑡 ) ∈𝑇𝑅



ẽ𝑟,𝑡− −
[
ê𝑟,𝑡− | 𝑒𝑟

]


2

(7)

Temporal Consistency Loss: It is the 𝐿2 norm of the difference

between the embeddings of each entity between each consecutive

interaction. The equation is:

L𝑡𝑒𝑚𝑝 =
∑︁

(𝑝,𝑒,𝑡 ) ∈𝑆
| |𝑒𝑝,𝑡 − 𝑒𝑝,𝑡− | |2 + ||𝑒𝑒,𝑡 − 𝑒𝑒,𝑡− | |2 (8)

Overall Loss: The overall loss is represented as the sum of the

previous losses. After pre-training them individually for the first

period, we jointly train the heterogenous co-evolving networks and

the BERT. In the subsequent periods, we only do the joint training.

Our overall loss formulation is as follows:

L = L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 + L𝑡𝑒𝑚𝑝 + L𝐿𝑀 + L𝐶𝐿 (9)

We optimize the overall loss using the Adam optimization algo-

rithm [17].We use the Adam optimizer with the learning rate of 1e-3

and the weight decay of 1e-5. The size of the dynamic embeddings

is set to 128. The overall training schema is given in Algorithm 1.
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Algorithm 1 Training scheme for our proposed model

Require: PR, TR, MD, NM, 𝑝𝑝 , 𝑝𝑝,𝑡 , period number (𝑝𝑒𝑟𝑖𝑜𝑑)

out of a total of 𝑘 periods, and number of epochs 𝐸.

if 𝑝𝑒𝑟𝑖𝑜𝑑==1 then

Initialize word embeddings with Dynamic Word2Vec vector

Pre-train BERT on Eqn (1)

LLM = 0 and L𝐶𝐿 = 0

Pre-train co-evolving Neural Network architecture on PR,
TR,MD by using Eqns (2-4)

Minimize L in Eqn (9)

end if

if 𝑝𝑒𝑟𝑖𝑜𝑑 > 1 then

𝜃𝑝𝑒𝑟𝑖𝑜𝑑 = 𝜃𝑝𝑒𝑟𝑖𝑜𝑑−1

end if

𝑒 = 1

while 𝑒 ≤ 𝐸 do

Perform Joint training on PR, TR,MD andNM with Eqns

(1-8).

if 𝑝𝑒𝑟𝑖𝑜𝑑 > 1 then

Compute L𝐶𝐿 by Eqn (6)

else if 𝑝𝑒𝑟𝑖𝑜𝑑==1 then

L𝐶𝐿 = 0

end if

Minimize L in Eqn (9)

Save model parameters

𝑒 = 𝑒 + 1

end while

3 EXPERIMENT

We provide code for academic purposes
1
. We conducted experi-

ments on AMD EPYC 7763 64-Core Processor with 2 TB memory

and on 8 NVIDIA A30 GPUs.

Data: The dataset is collected from the University of IowaHospitals

and Clinics (UIHC), which is a large (800-bed) tertiary care teaching

hospital in Iowa City, Iowa. The dataset consists of de-identified

Electronic Healthcare Records (EHR) and admission-discharge-

transfer (ADT) records on patients. Each patient visit has a set

of diagnoses, a timestamped record of room transfers and proce-

dures performed by physicians, prescribed medications, and clinical

notes. We extract patient interactions with medications, doctors,

and rooms, along with the clinical notes written for the patient in

2008, between May 04 to August 31. We split the data into three

overlapping periods of time chunks:

Period 1: Between May 04 and June 25. There are 245,043 doctor,

medication, and room interactions and 149,685 clinical notes.

Period 2: Between June 13 and August 07. There are 252,089 doctor,

medication, and room interactions and 152,037 clinical notes.

Period 3: Between July 10 and August 31. There are 257,994 doctor,

medication, and room interactions and 163,158 clinical notes.

We compare the performance of our methodwith state-of-the-art

methods in all applications.

• DOMAIN: In healthcare analytics, features are often hand-

crafted based on domain knowledge. We handcraft features

from the domain-based methods for each application [22, 25].

1
https://github.com/Soothysay/CL-EHR

• JODIE: This is an exemplary co-evolutionary neural net-

work, which learns embeddings over time from the stream

of interactions, and the learned embeddings are shown to

outperform in predictive modeling tasks. We train patient

embeddings using JODIE [19] with the stream of patient

interactions.

• DECEnt: This is another co-evolutionary neural network

that considers the heterogeneity in the interactions, designed

to learn dynamic patient embeddings. DECEnt has shown

to perform well in healthcare predictive modeling tasks [12].

3.1 Evaluation of the Continual Learning

Framework

Our motivation for incorporating a continually- adaptive represen-

tation learning framework into our architecture was to reduce both

time and resources to train the entire framework from scratch as

new data is available. To experimentally validate our motivation,

we compute the total number of Multiply–Accumulate Operations

(MACs) which were required to train our proposed model architec-

ture continually. The results are shown in Table 1.

In UIHC, we notice that the number of MACs drops by 68.40 %

from Period 1 to Period 2 and by 65.83 % from Period 2 to Period

3 for loss convergence. This validates the utility of the continual

adaptation present in the model architecture which leads to the

formation of a scaleable lifelong-learning model.

3.2 Application: CDI Incidence Prediction

Clostridioides Difficile Infection (CDI) is an HAI, that can lead to

severe health outcomes once an immunocompromised patient gets

infected with it. Due to this reason, healthcare facilities are keen to

prevent the spread of CDI.

We design the CDI prediction as a binary classification problem.

The embedding of a CDI patient is taken three days before the pa-

tient’s positive test date [8, 13]. This was to ensure no data leakage

due to the potential treatment given to patients for treating severe

diarrhea [27]. The embedding of a non-CDI patient is selected ran-

domly from their stay at the hospital. Note that getting CDI is a

rare event, for which we have about 150:1 class imbalance during

the period when the data was collected.

Table 2 shows the prediction results on each method, tested on

three periods over time, on three classifiers logistic regression (LR),

support vector machines (SVM), and random forest (RF). Notice

that our method performs consistently better than the baselines in

all the periods, regardless of the classifier that we use. We observe

Table 1: Flop counts for datasets using our method in a con-

tinual setting. Note that as the best model parameters from

the previous period are used, convergence is much faster,

thus reducing the number of MACs in the subsequent peri-

ods.

Dataset Period Number of MACs (In G)

UIHC

Period 1 492,772.60

Period 2 155,706.32

Period 3 53,189.76
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Table 2: ROC-AUC Scores for CDI Incidence Prediction for

UIHC. We perform 3- fold cross-validation with 30 repeti-

tions. Note that our proposed method outperforms all the

baseline methods for all classifiers.

Period Method LR SVM RF

Period 1

DOMAIN 0.49 ± 0.20 0.52 ± 0.07 0.34 ± 0.07

JODIE 0.44 ± 0.12 0.36 ± 0.09 0.52 ± 0.03

DECEnt 0.62 ± 0.07 0.57 ± 0.01 0.61 ± 0.06

Ours 0.65 ± 0.05 0.60 ± 0.04 0.73 ± 0.07

Period 2

DOMAIN 0.60 ± 0.11 0.54 ± 0.13 0.76 ± 0.19

JODIE 0.50 ± 0.05 0.47 ± 0.06 0.52 ± 0.18

DECEnt 0.71 ± 0.02 0.59 ± 0.16 0.77 ± 0.04

Ours 0.74 ± 0.08 0.62 ± 0.06 0.78 ± 0.19

Period 3

DOMAIN 0.67 ± 0.19 0.56 ± 0.09 0.71 ± 0.18

JODIE 0.61 ± 0.08 0.55 ± 0.14 0.59 ± 0.03

DECEnt 0.68 ± 0.12 0.63 ± 0.04 0.71 ± 0.19

Ours 0.69 ± 0.14 0.66 ± 0.07 0.72 ± 0.23

Table 3: ROC-AUC Scores for MICU Transfer Prediction for

UIHC. We perform 3- fold cross-validation with 30 repeti-

tions. Note that our proposed method outperforms most of

the baseline methods.

Period Method LR SVM RF

Period 1

DOMAIN 0.63 ± 0.20 0.52 ± 0.03 0.86 ± 0.13

JODIE 0.54 ± 0.15 0.51 ± 0.02 0.66 ± 0.04

DECEnt 0.85 ± 0.07 0.71 ± 0.05 0.83 ± 0.05

Ours 0.89 ± 0.05 0.77 ± 0.08 0.87 ± 0.03

Period 2

DOMAIN 0.68 ± 0.12 0.57 ± 0.13 0.71 ± 0.07

JODIE 0.59 ± 0.05 0.52 ± 0.10 0.55 ± 0.01

DECEnt 0.72 ± 0.07 0.65 ± 0.10 0.86 ± 0.03

Ours 0.76 ± 0.02 0.72 ± 0.03 0.89 ± 0.09

Period 3

DOMAIN 0.67 ± 0.13 0.56 ± 0.02 0.81 ± 0.03

JODIE 0.61 ± 0.08 0.52 ± 0.18 0.62 ± 0.12

DECEnt 0.85 ± 0.07 0.67 ± 0.01 0.87 ± 0.18

Ours 0.84 ± 0.12 0.71 ± 0.01 0.87 ± 0.08

a gain of up to 19.7 % in Period 1 when compared to the next best-

performing baseline method, DECEnt. Notice that DECEnt learns

embeddings from heterogeneous interactions but not using the

clinical notes, which highlights the importance of clinical notes for

learning patient embeddings.

3.3 Application: MICU Transfer Prediction

Some hospitalized patients get transferred to MICU when there

is a need for intensive care and continuous patient monitoring.

Such an event may indicate a deterioration of care; hence detecting

patients’ risk of being transferred to MICU beforehand may help

HCPs to better care for high-risk patients. Furthermore, predicting

such patients would help hospital officials to better allocate hospital

resources over time.

Similar to Section 3.2, We design the MICU transfer prediction

as a binary classification problem. Inpatients that get transferred to

MICU are positive instances. From them,we take the embedding one

day before the MICU transfer event. For the remaining inpatients

(aka, negative instances), we randomly sample the embedding from

their hospital stay. The MICU transfer prediction task is also a rare

event of a class imbalance of about 100:1.

Table 3 shows the results of MICU transfer prediction. Here, our

method outperforms all the other methods in Period 1 and Period

2, with a gain of up to 3.5 %. Notice that 3.5 % gain is impressive

since the resources are scarce in MICU, and hence this could have

help HCPs to better utilize the limited resources and hence lead

to saving patients’ lives. We observe a comparable performance in

Period 3 with DECEnt.

4 CONCLUSION

This work proposes a novel framework to learn patient embeddings

over time for time-sensitive healthcare applications. The learned

embeddings incorporate both the interactions and the clinical notes.

We use continual learning to reduce the time for training incoming

batches of interactions and notes. For each batch of interactions, we

jointly train the heterogeneous co-evolving networks with clinical

notes and refine the latent space of BERT. We show that our model

outperforms all state-of-the-art baselines in predictive modeling

tasks, such as MICU transfer and CDI incidence prediction.

5 RELATEDWORK

LLM for clinical notes Recently, biomedical communities have

adapted large language models (LLMs), such as BERT [7], to learn

to embed clinical notes. BioBERT initializes with general BERT

weights then use PMC full-text articles and PubMed abstracts to

pre-train their model [21].

Continual learning In continual learning, various methods were

developed to combat catastrophic forgetting [18]. iCARL stores

a subset of samples per class that best approximates class means

and re-uses them in training new batches [31]. Elastic Weight Con-

solidation (EWC) estimates the importance of neural network pa-

rameters, then penalizes if there are changes made to important

parameters [18]. Some othermethods, such as progressive networks,

instantiate new branches for new tasks but enable knowledge trans-

fer via lateral connections [32].

Healthcare analytics Various predictive modeling tasks are con-

sidered in Healthcare Analytics, such as mortality prediction [34] or

CDI prediction [22], that leverage electronic health records. Some

other works utilize patient mobility logs to solve inference prob-

lems, such as outbreak detection [2], missing infection [14, 36]. The

role of the architectural layout of the hospital is also explored [11].

Other methods learn patient embeddings. DECEnt uses heteroge-

neous co-evolving networks [12], whereas MiME utilizes multilevel

structure of EHR data [5].
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