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Introduction
Healthcare-associated infections (HAIs): infections that spread in 

healthcare settings

• Each year, roughly 4% of patients in the US are diagnosed with 

HAI

• Immunocompromised patients are at risk of HAI, and infections 

can lead to severe outcomes

Common HAIs, such as Methicillin-resistant Staphylococcus 

aureus (MRSA) infection or Clostridioides difficile infection (CDI) 

spread via contact

When some HAIs are detected, a lot of effort is invested into 

rapidly identifying the source of infection. This corresponds to the 

classical source detection problem. Previous works in source 

detection are restricted to disease models that spread via person-

to-person contacts. However, these methods are not suitable for 

infections where environment plays an important role. 

Hence, source detection problem remains open for HAIs, and is 

the focus of our paper.

Data
• Daily interactions between healthcare personnel (HCP), patients, 

and locations

• 31 daily snapshots each of the datasets

1 UIHC: University of Iowa Hospitals and Clinics

2 UVA: University of Virginia Hospital

Sponsors

Experiments
Set up: Simulate outbreaks from randomly selected sources 𝑆𝐺𝑇, 

and record observations 𝑃𝑜𝑠 and 𝑁𝑒𝑔
Then detect sources 𝑆𝑀 using our algorithms and baselines

Evaluation: A straightforward metric is to measure intersection of 

𝑆𝐺𝑇 and 𝑆𝑀. However, it is impossible for any algorithm to do well 

w.r.t. this metric due to the stochasticity of the load sharing model.

Hence, we use two other natural metrics

• 𝑃𝑜𝑠, 𝑁𝑒𝑔 Overlap: Measure overlap between “𝑃𝑜𝑠 and 𝑁𝑒𝑔” 

and “the positive set and negative set caused by outbreaks 

starting from 𝑆𝑀”

• 𝑆𝐺𝑇 Distance: Compute distance between 𝑆𝐺𝑇 and 𝑆𝑀

Results

Speed up: 𝑓 and 𝑔 are stochastic, which requires a substantial 

number of simulations to get good estimates. Hence, we propose 

expected load propagation heuristic

Conclusion
We consider the well-known source detection problem, but for a 

new and fundamentally different disease-spread model called the 

load sharing model. We show that a natural formulation of the 

problem is intractable, but present two tractable formulations. The 

tractability of these formulations critically depends on the 

submodularity of the expected number of infections as a function 

of the source set. We show submodularity despite not being able 

to use standard techniques such as the "live edge" technique. We 

design scalable algorithms that leverage submodularity and speed 

these up significantly by using a novel heuristic. Experiments on 

real and simulated outbreaks on three different hospital data show 

significant advantages of our approach over the baselines.

Source Detection Problem
Given a temporal network 𝒢=(𝐺_0,𝐺_1,…,𝐺_(𝑇−1)), 

a load sharing model 𝑀, and a set of observed cases

Find a source set 𝑆
• that makes 𝑔(𝑆) large 

• while keeping 𝑓(𝑆) small

𝛼(𝑣, 𝑆) : Probability of 𝑣 that get infected according 

to 𝑀 due to disease starting at 𝑆
𝑔 𝑆 = σ𝑣∈𝑃𝑜𝑠𝛼(𝑣, 𝑆) : Expected number of infections 

among

𝑓 𝑆 = σ𝑣∈𝑁𝑒𝑔𝛼(𝑣, 𝑆): Expected number of infections 

among

Load Sharing Model

Problem Formulation

Source Detection Positive-Negative Partial Set Cover (SD±PSC)

Given

• a temporal network 𝐺 = (𝐺0, 𝐺1, … , 𝐺𝑇−1)
• a load sharing model 𝑀
• an observed positive set 𝑃𝑜𝑠 in time 𝑇 − 2 and 𝑇 − 1
Find a source set 𝑆∗ in time 0 and 1

That minimizes σ𝑣𝜖𝑃𝑜𝑠(1 − 𝛼(𝑣, 𝑆)) + σ𝑣𝜖𝑁𝑒𝑔 𝛼(𝑣, 𝑆)

Note: the source detection period and the observation period is 2 

timesteps, but the paper considers the general problem.

The objective function is a simple and natural model for the Source 

Detection problem. However, no reasonable approximation exists for 

the problem. Due to the hardness of the problem, we present two 

computationally tractable surrogates for the problem.

Submodularity
Set function 𝑓: 2𝑉 → ℝ is submodular if it satisfies

𝑓 𝑆 ∪ {𝑒} − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑒 − 𝑓 𝑇 , 𝑆 ⊆ 𝑇 ⊆ 𝑉, 𝑒 ∈ 𝑉\T

The core of our contribution is showing 𝑔(𝑆), 𝑓(𝑆) and 𝑓𝑡(𝑆) are monotone 

and submodular set functions

• The key aspect is showing that if 

• loads at nodes are monotone, submodular functions of the source 

set

• the dose response function is concave

• then 𝑔(𝑆) is submodular

• Proof uses ‘coupling’ technique

Source Detection Positive-Negative Knapsack (SD±KNAP)

Given

• a temporal network 𝐺 = (𝐺0, 𝐺1, … , 𝐺𝑇−1)
• a load sharing model 𝑀
• an observed positive set 𝑃𝑜𝑠 in time 𝑇 − 2 and 𝑇 − 1
• parameters 𝑘𝑇−2, 𝑘𝑇−1 ∈ ℝ

+

Find a source set 𝑆∗ in time 0 and 1

That maximizes 𝑔 𝑆
• such that 𝑆 satisfies constraints 𝑓𝑇−2(𝑆) ≤ 𝑘𝑇−2 and 𝑓𝑇−1(𝑆) ≤ 𝑘𝑇−1

Source Detection Positive-Negative Ratio (SD±RATIO)

Given

• a temporal network 𝐺 = (𝐺0, 𝐺1, … , 𝐺𝑇−1)
• a load sharing model 𝑀
• an observed positive set 𝑃𝑜𝑠 in time 𝑇 − 2 and 𝑇 − 1
• parameters 𝛾𝑇−2, 𝛾𝑇−1 ∈ ℝ+

Find a source set 𝑆∗ in time 0 and 1

That maximizes
𝑔(𝑆)

𝛾𝑇−2∙𝑓𝑇−2 𝑆 + 𝛾𝑇−1∙𝑓𝑇−1 𝑆

• We couple the stochastic decisions made from 4 source sets 

• 𝑆, 𝑆 + 𝑣 , 𝑄, 𝑄 + {𝑣}, where 𝑆 ⊆ 𝑄 and 𝑣 ∉ 𝑄
• The submodularity in the objective functions allows access to various 

algorithmic approaches

• SD±KNAP : Adapted from Bilmes-Iyer gradient ascent framework 

and Azar-Gamzu multiplicative update

• SD±RATIO : Adapted from Bai et. al, greedy for maximizing ratio of 

submodular functions
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Load remaining 

after natural decay
Outgoing load Incoming load Shedding

Hospital

Number 

of 

nodes

Number 

of edges 

( / day)

Interactions captured in

UIHC1 

whole graph

10.4 K 13.8 K UIHC, the whole hospital

UIHC unit 0.8 K 0.5 K A unit in UIHC with the most

number of CDI cases

UVA2 pre 

COVID

2.4 K 0.4 K Cardiology department, 

2011

UVA post 

COVID

0.9 K 0.4 K Cardiology department, 

2020

Carilion 2.3 K 29.6 K Carilion Hospital in VA.

Public dataset

Probabilistic shedding

Expected number of 

positive cases not

infected by an 

infection starting at 

source set S

Expected number of 

negative cases 

infected by an 

infection starting at 

source set S

𝑃𝑜𝑠, 𝑁𝑒𝑔 Overlap
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